【題目】已知兩點(diǎn)Mx1,y1),Nx2y2),則線段MN的中點(diǎn)Kx,y)的坐標(biāo)公式為:x,y 如圖,已知點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A(﹣3,0),O經(jīng)過點(diǎn)A,點(diǎn)B為弦PA的中點(diǎn).若點(diǎn)Pab),則有ab滿足等式:a2+b29.設(shè)Bm,n),則m,n滿足的等式是(

A.m2+n29B.2+29

C.2m+32+2n23D.2m+32+4n29

【答案】D

【解析】

根據(jù)平面直角坐標(biāo)系內(nèi),中點(diǎn)坐標(biāo)公式,結(jié)合a2+b29,即可得到答案.

∵點(diǎn)A(﹣3,0),點(diǎn)Pa,b),O經(jīng)過點(diǎn)A,點(diǎn)Bm,n)為弦PA的中點(diǎn),

,

a=2m+3,b=2n,

a2+b29,

∴(2m+32+4n29,

故選D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線軸的交點(diǎn)為A,B(點(diǎn)A 在點(diǎn)B的左側(cè)).

1)求點(diǎn)A,B的坐標(biāo);

2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫整點(diǎn).

直接寫出線段AB上整點(diǎn)的個(gè)數(shù);

將拋物線沿翻折,得到新拋物線,直接寫出新拋物線在軸上方的部分與線段所圍成的區(qū)域內(nèi)(包括邊界)整點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長為6的正方形沿其對角線剪開,再把沿著方向平移,得到,當(dāng)兩個(gè)三角形重疊部分的面積為5時(shí),則______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,AB6,AC3,∠BAC60°,為⊙O上的一段弧,且∠BOC60°,分別在、線段ABAC上選取點(diǎn)P、E、F,則PEEFFP的最小值為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,有一個(gè),頂點(diǎn)的坐標(biāo)分別是.繞原點(diǎn)順時(shí)針旋轉(zhuǎn)90°得到,請?jiān)谄矫嬷苯亲鴺?biāo)系中作出,并寫出的頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,并完成相應(yīng)的任務(wù).

任務(wù):

1)上述證明過程中的“依據(jù)1”和“依據(jù)2”分別指什么?

依據(jù)1

依據(jù)2

2)當(dāng)圓內(nèi)接四邊形ABCD是矩形時(shí),托勒密定理就是我們非常熟知的一個(gè)定理: (請寫出定理名稱).

3)如圖(3),四邊形ABCD內(nèi)接于O,AB=3,AD=5,∠BAD=60°,點(diǎn)C是弧BD的中點(diǎn),求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線的解析表達(dá)式為,且軸交于點(diǎn),直線經(jīng)過點(diǎn),直線交于點(diǎn)

1求點(diǎn)的坐標(biāo);

2求直線的解析表達(dá)式;

3的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,是線段上的兩個(gè)動點(diǎn),且,過點(diǎn),分別作,的垂線相交于點(diǎn),垂足分別為,.有以下結(jié)論:①;②當(dāng)點(diǎn)與點(diǎn)重合時(shí),;③.其中正確的結(jié)論有(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,以為直徑作半圓,半徑繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,點(diǎn)的對應(yīng)點(diǎn)為,當(dāng)點(diǎn)與點(diǎn)重合時(shí)停止.連接并延長到點(diǎn),使得,過點(diǎn)于點(diǎn),連接,

1______

2)如圖,當(dāng)點(diǎn)與點(diǎn)重合時(shí),判斷的形狀,并說明理由;

3)如圖,當(dāng)時(shí),求的長;

4)如圖,若點(diǎn)是線段上一點(diǎn),連接,當(dāng)與半圓相切時(shí),直接寫出直線的位置關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案