【題目】某中學(xué)為了創(chuàng)建“最美校園圖書屋”新購買了一批圖書,其中科普類圖書平均每本的價(jià)格是文學(xué)類圖書平均每本書價(jià)格的1.2倍,已知學(xué)校用12000元購買文學(xué)類圖書的本數(shù)比用這些錢購買科普類圖書的本數(shù)多100本,那么學(xué)校購買文學(xué)類圖書平均每本書的價(jià)格是( 。

A.20B.18C.15D.10

【答案】A

【解析】

設(shè)文學(xué)類圖書平均價(jià)格為x/本,則科普類圖書平均價(jià)格為1.2x/本,根據(jù)數(shù)量=總價(jià)÷單價(jià)結(jié)合用12000元購買文學(xué)類圖書的本數(shù)比用這些錢購買科普類圖書的本數(shù)多100本,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗(yàn)后即可得出結(jié)論.

設(shè)文學(xué)類圖書平均價(jià)格為x/本,則科普類圖書平均價(jià)格為1.2x/本,

依題意得:,

解得:x20

經(jīng)檢驗(yàn),x20是原方程的解,且符合題意.

故選A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CB=CA,∠ACB=90°,點(diǎn)D在邊BC上(與B,C不重合),四邊形ADEF為正方形,過點(diǎn)F作FG⊥CA,交CA的延長線于點(diǎn)G,連接FB,交DE于點(diǎn)Q,給出以下結(jié)論:①AC=FG;②S△FAB∶S四邊形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中正確結(jié)論的個(gè)數(shù)是(  )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某興趣小組同學(xué)借助無人機(jī)航拍測量某公園內(nèi)一座古塔高度.如圖,無人機(jī)在距離地面168米的A處,測得該塔底端點(diǎn)B的俯角為40°,然后向古塔方向沿水平面飛行50秒到達(dá)點(diǎn)C處,此時(shí)測得該塔頂端點(diǎn)D的俯角為60°.已知無人機(jī)的飛行速度為3/秒,則這座古塔的高度約為_____米(參考計(jì)算:sin40°≈064cos40°≈077tan40°≈0.84.1.41. 1.73.結(jié)果精確到0.1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖拋物y=﹣x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)CCD兩點(diǎn)關(guān)于拋物線對稱軸對稱,連接BDy軸于點(diǎn)E,拋物線對稱軸交x軸于點(diǎn)F

1)點(diǎn)P為線段BD上方拋物線上的一點(diǎn),連接PD,PE.點(diǎn)My軸上一點(diǎn),過點(diǎn)MMNy軸交拋物線對稱軸于點(diǎn)N.當(dāng)△PDE面積最大時(shí),求PM+MN+NF的最小值;

2)如圖2,在(1)中PM+MN+NF取得最小值時(shí),將△PME繞點(diǎn)P順時(shí)針旋轉(zhuǎn)120°后得到△PME′,點(diǎn)GMN的中點(diǎn),連接MG交拋物線的對稱軸于點(diǎn)H,過點(diǎn)H作直線lPM,點(diǎn)R是直線l上一點(diǎn),在平面直角坐標(biāo)系中是否存在一點(diǎn)S,使以點(diǎn)M′,點(diǎn)G,點(diǎn)R,點(diǎn)S為頂點(diǎn)的四邊形是矩形?若存在,直接寫出點(diǎn)S的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】公園內(nèi)一涼亭,涼亭頂部是一圓錐形的頂蓋,立柱垂直于地面,在涼亭內(nèi)中央位置有一圓形石桌,某數(shù)學(xué)研究性學(xué)習(xí)小組,將此涼亭作為研究對象,并繪制截面示意圖,其中頂蓋母線ABAC的夾角為124°,涼亭頂蓋邊緣B、C到地面的距離為2.4米,石桌的高度DE0.6米,經(jīng)觀測發(fā)現(xiàn):當(dāng)太陽光線與地面的夾角為42°時(shí),恰好能夠照到石桌的中央E處(AE、D三點(diǎn)在一條直線上),請你求出圓錐形頂蓋母線AB的長度.(結(jié)果精確到0.1m)(參考數(shù)據(jù):sin62°≈0.88,tan42°≈0.90

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商品的進(jìn)價(jià)為每件30元,售價(jià)為每件40元,每周可賣出180件;如果每件商品的售價(jià)每上漲1元,則每周就會少賣出5件,但每件售價(jià)不能高于55元,設(shè)每件商品的售價(jià)上漲x(x為整數(shù)),每周的銷售利潤為y元.

(1)yx的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;

(2)每件商品的售價(jià)為多少元時(shí),每周可獲得最大利潤?最大利潤是多少?

(3)每件商品的售價(jià)定為多少元時(shí),每周的利潤恰好是2145元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知的直徑,過點(diǎn)作,交弦于點(diǎn),交于點(diǎn),且使.

1)求證:的切線;

2)若,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中有一直角三角形AOB,O為坐標(biāo)原點(diǎn),OA=1,tan∠BAO=3,將此三角形繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到△DOC,拋物線yax2+bx+c經(jīng)過點(diǎn)A、B、C

(1)求拋物線的解析式;

(2)若點(diǎn)P是第二象限內(nèi)拋物線上的動點(diǎn),其橫坐標(biāo)為t,設(shè)拋物線對稱軸lx軸交于一點(diǎn)E,連接PE,交CDF,求以C、E、F為頂點(diǎn)三角形與△COD相似時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某鄉(xiāng)鎮(zhèn)實(shí)施產(chǎn)業(yè)精準(zhǔn)扶貧,幫助貧困戶承包了若干畝土地種植新品草莓,已知該草莓的成本為每千克10元,草莓成熟后投入市場銷售,經(jīng)市場調(diào)查發(fā)現(xiàn),草莓銷售不會虧本,且每天的銷售量y(千克)與銷售單價(jià)x(元/千克)之間函數(shù)關(guān)系如圖所示.

1)求yx的函數(shù)關(guān)系式,并寫出x的取值范圍.

2)當(dāng)該品種草莓的定價(jià)為多少時(shí),每天銷售獲得利潤最大?最大利潤是多少?

3)某村今年草莓采摘期限30天,預(yù)計(jì)產(chǎn)量6000千克,則按照(2)中的方式進(jìn)行銷售,能否銷售完這批草莓?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案