【題目】某商店在甲批發(fā)市場(chǎng)以每包m元的價(jià)格進(jìn)了40包茶葉,又在乙批發(fā)市場(chǎng)以每包n元(m>n)的價(jià)格進(jìn)了同樣的60包茶葉,如果商家以每包元的價(jià)格賣出這種茶葉,賣完后,這家商店( )

A.盈利了 B.虧損了 C.不贏不虧 D.盈虧不能確定

【答案】A

【解析】

試題分析:根據(jù)題意列出商店在甲批發(fā)市場(chǎng)茶葉的利潤(rùn),以及商店在乙批發(fā)市場(chǎng)茶葉的利潤(rùn),將兩利潤(rùn)相加表示出總利潤(rùn),根據(jù)m大于n判斷出其結(jié)果大于0,可得出這家商店盈利了.

解:根據(jù)題意列得:在甲批發(fā)市場(chǎng)茶葉的利潤(rùn)為40(﹣m)=20(m+n)﹣40m=20n﹣20m;

在乙批發(fā)市場(chǎng)茶葉的利潤(rùn)為60(﹣n)=30(m+n)﹣60n=30m﹣30n,

該商店的總利潤(rùn)為20n﹣20m+30m﹣30n=10m﹣10n=10(m﹣n),

m>n,m﹣n>0,即10(m﹣n)>0,

則這家商店盈利了.

故選A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABC的三個(gè)角是∠A,B,C ,它們所對(duì)的邊分別是a,b,c.c2-a2=b2②∠A=B=C;c=a=b;a=2,b=2 ,c=.上述四個(gè)條件中,能判定ABC 為直角三角形的有(  )

A. 1個(gè) B. 2個(gè)

C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,長(zhǎng)方形OABC的邊OA在數(shù)軸上,O為原點(diǎn),長(zhǎng)方形OABC的面積為12,OC邊長(zhǎng)為3.

(1)數(shù)軸上點(diǎn)A表示的數(shù)為________

(2)將長(zhǎng)方形OABC沿?cái)?shù)軸水平移動(dòng),移動(dòng)后的長(zhǎng)方形記為O′A′B′C′,移動(dòng)后的長(zhǎng)方形O′A′B′C′與原長(zhǎng)方形OABC重疊部分(如圖2中陰影部分)的面積記為S.

①當(dāng)S恰好等于原長(zhǎng)方形OABC面積的一半時(shí),數(shù)軸上點(diǎn)A′表示的數(shù)是多少?

  ②設(shè)點(diǎn)A的移動(dòng)距離AA′x.

  ()當(dāng)S4時(shí),求x的值;

  )D為線段AA′的中點(diǎn),點(diǎn)E在線段OO′上,且OEOO′,當(dāng)點(diǎn)D,E所表示的數(shù)互為相反數(shù)時(shí),求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD,,將沿BE折疊,使點(diǎn)A恰好落在對(duì)角線BDF處,則DE的長(zhǎng)是  

A. 3 B. C. 5 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,CD為線段AB上的兩點(diǎn),M,N分別是線段AC,BD的中點(diǎn).

(1)如果CD=5cm,MN=8cm,求AB的長(zhǎng);

(2)如果AB=aMN=b,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某天早晨,張強(qiáng)從家跑步去體育鍛煉,同時(shí)媽媽從體育場(chǎng)晨練結(jié)束回家,途中兩人相遇,張強(qiáng)跑到體育場(chǎng)后發(fā)現(xiàn)要下雨,立即按原路返回,遇到媽媽后兩人一起回到家(張強(qiáng)和媽媽始終在同一條筆直的公路上行走).如圖是兩人離家的距離y(米)與張強(qiáng)出發(fā)的時(shí)間x(分)之間的函數(shù)圖象,根據(jù)圖象信息解答下列問(wèn)題:

(1)求張強(qiáng)返回時(shí)的速度;

(2)媽媽比按原速返回提前多少分鐘到家?

(3)請(qǐng)直接寫出張強(qiáng)與媽媽何時(shí)相距1000米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題12分)如圖,已知點(diǎn)D△ABCBC邊上,DE∥ACABE,DF//ABACF

1)求證:AE=DF

2)若AD平分∠BAC,試判斷四邊形AEDF的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l1:y1=2x+3與直線l2:y2=kx﹣1相交于點(diǎn)A,A橫坐標(biāo)為﹣1,且直線l1x軸交于B點(diǎn),與y軸交于D點(diǎn),直線l2y軸交于C點(diǎn).

(1)求出A點(diǎn)的坐標(biāo)及直線l2的解析式;

(2)連接BC,求出SABC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知邊長(zhǎng)為m的正方形面積為12,則下列關(guān)于m的說(shuō)法中,錯(cuò)誤的是( )

①m是無(wú)理數(shù);②m是方程m2 -12=0的解;③m滿足不等式組,④m是12的算術(shù)平方根.

A. ①② B. ①③ C. D. ①②④

查看答案和解析>>

同步練習(xí)冊(cè)答案