【題目】一組數(shù)據(jù)3,5,8,34的眾數(shù)與中位數(shù)分別是(

A. 3,8 B. 3,3 C. 3,4 D. 43

【答案】C

【解析】∵3出現(xiàn)的次數(shù)最多,

眾數(shù)是3;

從小到大排列后為3,3,4,5,8

眾數(shù)是4;

故選C.

點(diǎn)睛:如果一組數(shù)據(jù)有奇數(shù)個(gè),那么把這組數(shù)據(jù)從小到大排列后,排在中間位置的數(shù)是這組數(shù)據(jù)的中位數(shù);如果一組數(shù)據(jù)有偶數(shù)個(gè),那么把這組數(shù)據(jù)從小到大排列后,排在中間位置的兩個(gè)數(shù)的平均數(shù)是這組數(shù)據(jù)的中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個(gè)數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖1是一個(gè)長為2x、寬為2y的長方形,沿圖中虛線用剪刀剪成四個(gè)完全相同的小長方形,然后按圖2所示拼成一個(gè)正方形.

(1)你認(rèn)為圖2中的陰影部分的正方形的邊長等于
(2)試用兩種不同的方法求圖2中陰影部分的面積.
方法1: 方法2:
(3)根據(jù)圖2你能寫出下列三個(gè)代數(shù)式之間的等量關(guān)系嗎?
代數(shù)式:(x+y)2,(x-y)2,4xy

(4)根據(jù)(3)題中的等量關(guān)系,解決如下問題:
x+y=4,xy=3,則(x-y)2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的頂點(diǎn)坐標(biāo)C4,﹣9),且過點(diǎn)(﹣1,16).

1)求拋物線的解析式.

2)若函數(shù)圖象與x軸交于A,B兩點(diǎn),求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一件衣服按原價(jià)的8折出售時(shí),售價(jià)是40 元,則原價(jià)為_____________元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是數(shù)值轉(zhuǎn)換機(jī)的示意圖,小明按照其對應(yīng)關(guān)系畫出了yx的函數(shù)圖象(如圖):

1)分別寫出當(dāng)0≤x≤4x4時(shí),yx的函數(shù)關(guān)系式:

2)求出所輸出的y的值中最小一個(gè)數(shù)值;

3)寫出當(dāng)x滿足什么范圍時(shí),輸出的y的值滿足3≤y≤6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x﹣1與反比例函數(shù)y=的圖象交于A、B兩點(diǎn),與x軸交于點(diǎn)C,已知點(diǎn)A的坐標(biāo)為(﹣1,m).

(1)求反比例函數(shù)的解析式;

(2)若點(diǎn)P(n,﹣1)是反比例函數(shù)圖象上一點(diǎn),過點(diǎn)P作PEx軸于點(diǎn)E,延長EP交直線AB于點(diǎn)F,求CEF的面積.

(3)在x軸上是否存在點(diǎn)Q,使得QBC是等腰三角形?若存在,請直接寫出Q點(diǎn)坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用正四邊形和正八邊形鑲嵌成一個(gè)平面,則在某一個(gè)頂點(diǎn)處,正四邊形和正八邊形的個(gè)數(shù)分別為( )
A.2個(gè)和1個(gè)
B.1個(gè)和2個(gè)
C.3個(gè)和1個(gè)
D.1個(gè)和3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)M=(x﹣3)(x﹣7),N=(x﹣2)(x﹣8),則MN的關(guān)系為(

A. MN B. MN C. M=N D. 不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的面積為1.第一次操作:分別延長AB,BC,CA至點(diǎn)A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,順次連接A1,B1,C1,得到△A1B1C1.第二次操作:分別延長A1B1,B1C1C1A1至點(diǎn)A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,順次連接A2B2C2,得到△A2B2C2,…按此規(guī)律,要使得到的三角形的面積超過2017,最少經(jīng)過(  )次操作.

A. 6 B. 5 C. 4 D. 3

查看答案和解析>>

同步練習(xí)冊答案