(2013•蘭州一模)如圖,某電力項目中需要在一小山頂A處架一電線桿AH,使電線桿與小山的總高度BH為110米,測量時,工程人員王師傅在山腳下C點測得山頂A的仰角為45°,然后沿坡腳為30°的斜坡走40米到達D點,在D點測得山頂A的仰角為30°,求所需電線桿AH的高度(參考數(shù)據(jù):
3
≈1.73)
分析:過D作DE⊥BC于E,作DF⊥AB于F,易證△ABC是等腰直角三角形,直角△CDE中已知邊CD和∠DCE=30°,則可以得到CE,DE的長度,設(shè)BC=x,則AE和DF即可用含x的代數(shù)式表示出來,在直角△AED中,利用三角函數(shù)即可得到一個關(guān)于x的方程,求得x的值,即可求得AH的高度.
解答:解:過D作DE⊥BC于E,作DF⊥AB于F,設(shè)AB=x,
在Rt△DEC中,∠DCE=30°,CD=40,
∴DE=20,CE=20
3

在Rt△ABC中,∠ACB=45°,
設(shè)BC=x,
則AB=x,
AF=AB-BF=AB-DE=x-20,
DF=BE=BC+CE=x+5,0
3

在Rt△AFD中,∠ADF=30°,tan30°=
AF
FD
,
x-20
x+20
3
=
3
3
,
解得:x=20(3+
3
)≈94.6(米),
∵BH=110米,
∴AH=110-94.6=15.4(米).
答:所需電線桿AH的高度15.4米.
點評:本題考查仰角的定義,要求學生能借助仰角構(gòu)造直角三角形,并結(jié)合圖形利用三角函數(shù)解直角三角形.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2013•蘭州一模)實數(shù)a,b在數(shù)軸上的位置如圖所示,則關(guān)于x的一元二次方程ax2+bx+1=0( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•蘭州一模)如圖,菱形OABC的頂點B在y軸上,頂點C的坐標為(-3,2),若反比例函數(shù)y=
k
x
(x>0)的圖象經(jīng)過點A,則反比例函數(shù)的表達式為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•蘭州一模)已知x2-mx+4是一個關(guān)于x的完全平方式,且反比例函數(shù)y=
m+1
x
的圖象在每個象限內(nèi)y隨x的增大而增大,那么m的值為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•蘭州一模)若(a-bcos60°)2+|b-2tan45°|=0,則(a-b)2013的值是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•蘭州一模)若反比例函數(shù)y=
kx
的圖象經(jīng)過點(2,-5),則k的值為
-10
-10

查看答案和解析>>

同步練習冊答案