【題目】如圖,OP平分∠AOB,∠AOP=15°,PC∥OA,PD⊥OA于點(diǎn)D,PC=4,則PD=

【答案】2
【解析】解:作PE⊥OA于E,
∵∠AOP=∠BOP,PD⊥OB,PE⊥OA,
∴PE=PD(角平分線上的點(diǎn)到角兩邊的距離相等),
∵∠BOP=∠AOP=15°,
∴∠AOB=30°,
∵PC∥OB,
∴∠ACP=∠AOB=30°,
∴在Rt△PCE中,PE= PC= ×4=2(在直角三角形中,30°角所對的直角邊等于斜邊的一半),
∴PD=PE=2,
故答案是:2.

【考點(diǎn)精析】認(rèn)真審題,首先需要了解角平分線的性質(zhì)定理(定理1:在角的平分線上的點(diǎn)到這個角的兩邊的距離相等; 定理2:一個角的兩邊的距離相等的點(diǎn),在這個角的平分線上),還要掌握含30度角的直角三角形(在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半)的相關(guān)知識才是答題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明同學(xué)用自制的直角三角形紙板DEF測量樹的高度AB,他調(diào)整自己的位置,設(shè)法使斜邊DF保持水平,并且邊DE與點(diǎn)B在同一直線上.已知紙板的兩條直角邊DE=0.4m,EF=0.2cm,測得邊DF離地面的高度AC=1.5m,CD=8m,求樹高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)活動課上,某學(xué)習(xí)小組對有一內(nèi)角為120°的平行四邊形ABCD(∠BAD=120°)進(jìn)行探究:將一塊含60°的直角三角板如圖放置在平行四邊形ABCD所在平面內(nèi)旋轉(zhuǎn),且60°角的頂點(diǎn)始終與點(diǎn)C重合,較短的直角邊和斜邊所在的兩直線分別交線段AB,AD于點(diǎn)E,F(xiàn)(不包括線段的端點(diǎn)).

(1)初步嘗試
如圖1,若AD=AB,求證:①△BCE≌△ACF,②AE+AF=AC;
(2)類比發(fā)現(xiàn)
如圖2,若AD=2AB,過點(diǎn)C作CH⊥AD于點(diǎn)H,求證:AE=2FH;
(3)深入探究
如圖3,若AD=3AB,探究得: 的值為常數(shù)t,則t=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,∠ABC=60°,AB=2,點(diǎn)P是這個菱形內(nèi)部或邊上的一點(diǎn),若以點(diǎn)P、B、C為頂點(diǎn)的三角形是等腰三角形,則P、D(P、D兩點(diǎn)不重合)兩點(diǎn)間的最短距離為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),拋物線y=ax2+bx+5經(jīng)過點(diǎn)M(1,3)和N(3,5)

(1)試判斷該拋物線與x軸交點(diǎn)的情況;
(2)平移這條拋物線,使平移后的拋物線經(jīng)過點(diǎn)A(﹣2,0),且與y軸交于點(diǎn)B,同時滿足以A、O、B為頂點(diǎn)的三角形是等腰直角三角形,請你寫出平移過程,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,E是BC的中點(diǎn),連接AE并延長交DC的延長線于點(diǎn)F.

(1)求證:AB=CF;
(2)連接DE,若AD=2AB,求證:DE⊥AF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y= x+4與x軸、y軸分別交于點(diǎn)A和點(diǎn)B,點(diǎn)C、D分別為線段AB、OB的中點(diǎn),點(diǎn)P為OA上一動點(diǎn),PC+PD值最小時點(diǎn)P的坐標(biāo)為( )

A.(﹣3,0)
B.(﹣6,0)
C.(﹣ ,0)
D.(﹣ ,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,△ABC的位置如圖所示(每個小方格都是邊長為1個單位長度的正方形).

(1)將△ABC沿x軸方向向左平移6個單位,畫出平移后得到的△A1B1C1;
(2)將△ABC繞著點(diǎn)A順時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△AB2C2 , 并直接寫出點(diǎn)B2、C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°AO是△ABC的角平分線.以O(shè)為圓心,OC為半徑作⊙O.

(1)求證:AB是⊙O的切線.
(2)已知AO角⊙O于點(diǎn)E,延長AO交⊙O于點(diǎn)D,tanD= ,求 的值.
(3)在(2)的條件下,設(shè)⊙O的半徑為3,求AB的長.

查看答案和解析>>

同步練習(xí)冊答案