【題目】如圖,在梯形ABCD中,ABCD.

(1)已知∠A=B,求證:AD=BC

(2)已知AD=BC,求證:∠A=B.

【答案】(1)詳見(jiàn)解析;(2)詳見(jiàn)解析.

【解析】

1)過(guò)CCEDA,可證明四邊形ADCE是平行四邊形,根據(jù)平行四邊形的性質(zhì)可得AD=EC,根據(jù)DACE,可得∠A=CEB,根據(jù)等量代換可得∠CEB=B,進(jìn)而得到EC=BC,從而可得AD=BC;

2)根據(jù)CEDAABCD,可證明四邊形AECD是平行四邊形,根據(jù)平行四邊形的性質(zhì)可得AD=EC,再由條件AD=BC可得EC=BC,根據(jù)等邊對(duì)等角可得∠B=CEB,再根據(jù)平行線的性質(zhì)可得∠A=CEB,利用等量代換可得∠B=A

解:(1)如圖,過(guò)點(diǎn)CCEDA,交AB于點(diǎn)E

CEDA,ABCD

∴四邊形AECD是平行四邊形

AD=EC

又∵CEDA

∴∠A=CEB

又∵∠A=B

∴∠CEB=B

EC=BC

AD=BC

2)∵CEDA,ABCD

∴四邊形AECD是平行四邊形

AD=EC

又∵AD=BC

EC=BC

∴∠CEB=B

又∵CEDA

∴∠CEB=A

∴∠B=A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB為⊙O的直徑,點(diǎn)E在⊙O上,∠EAB的平分線交⊙O于點(diǎn)C,過(guò)點(diǎn)C作AE的垂線,垂足為D,直線DC與AB的延長(zhǎng)線交于點(diǎn)P.

(1)判斷直線PC與⊙O的位置關(guān)系,并說(shuō)明理由;

(2)若tan∠P=,AD=6,求線段AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=ax2+bx+c的頂點(diǎn)為D1,2,與x軸的一個(gè)交點(diǎn)A在點(diǎn)3,0

2,0之間,其部分圖象如下圖,則以下結(jié)論:b24ac<0;a+b+c<0;ca=2;方程ax2+bx+c2=0有兩個(gè)相等的實(shí)數(shù)根其中正確結(jié)論的個(gè)數(shù)為( )

A1個(gè) B2個(gè) C3個(gè) D4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表給出了16名學(xué)生的身高情況與全班平均身高的差值(單位:厘米)

學(xué)生

A

B

C

D

E

F

身高

157

162

159

152

163

164

身高與全班平均身高的差值

-3

+2

-1

a

+3

b

1)列式計(jì)算表中數(shù)據(jù)ab

2)這6名學(xué)生的平均身高與全班學(xué)生的平均身高相比,在數(shù)值上有什么關(guān)系?(通過(guò)計(jì)算回答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校準(zhǔn)備購(gòu)買(mǎi)A、B兩種型號(hào)籃球,詢(xún)問(wèn)了甲、乙兩間學(xué)校了解這兩款籃球的價(jià)格,下表是甲、乙兩間學(xué)校購(gòu)買(mǎi)A、B兩種型號(hào)籃球的情況:

購(gòu)買(mǎi)學(xué)校

購(gòu)買(mǎi)型號(hào)及數(shù)量(個(gè))

購(gòu)買(mǎi)支出款項(xiàng)(元)

A

B

3

8

622

5

4

402

(1)求A、B兩種型號(hào)的籃球的銷(xiāo)售單價(jià);

(2)若該學(xué)校準(zhǔn)備用不多于1000元的金額購(gòu)買(mǎi)這兩種型號(hào)的籃球共20個(gè),求A種型號(hào)的籃球最少能采購(gòu)多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠一周計(jì)劃每日生產(chǎn)自行車(chē)100,由于工人實(shí)行輪休,每日上班人數(shù)不一定相等,實(shí)際每日生產(chǎn)量與計(jì)劃量相比情況如下表(以計(jì)劃量為標(biāo)準(zhǔn),增加的車(chē)輛數(shù)記為正數(shù),減少的車(chē)輛數(shù)記為負(fù)數(shù)):

(1)生產(chǎn)量最多的一天比生產(chǎn)量最少的一天多生產(chǎn)多少輛?

(2)本周總的生產(chǎn)量是多少輛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表是某校九年級(jí)(1)20名學(xué)生某次數(shù)學(xué)測(cè)驗(yàn)的成績(jī)統(tǒng)計(jì)表:

成績(jī)()

60

70

80

90

100

人數(shù)()

1

5

x

y

2

(1)若這20名學(xué)生成績(jī)的平均分?jǐn)?shù)為82分,求xy的值;

(2)(1)的條件下,設(shè)這20名學(xué)生本次測(cè)驗(yàn)成績(jī)的眾數(shù)為a,中位數(shù)為b,求a,b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在學(xué)習(xí)絕對(duì)值后,我們知道,表示數(shù)在數(shù)軸上的對(duì)應(yīng)點(diǎn)與原點(diǎn)的距離. 如:表示5在數(shù)軸上的對(duì)應(yīng)點(diǎn)到原點(diǎn)的距離.而,即表示5、0在數(shù)軸上對(duì)應(yīng)的兩點(diǎn)之間的距離.類(lèi)似的,有:表示5、3在數(shù)軸上對(duì)應(yīng)的兩點(diǎn)之間的距離;,所以表示5、在數(shù)軸上對(duì)應(yīng)的兩點(diǎn)之間的距離. 一般地,點(diǎn)A、B在數(shù)軸上分別表示有理數(shù)、,那么A、B之間的距離可表示為

請(qǐng)根據(jù)絕對(duì)值的意義并結(jié)合數(shù)軸解答下列問(wèn)題:

1)數(shù)軸上表示25的兩點(diǎn)之間的距離是______;數(shù)軸上表示1和-3的兩點(diǎn)之間的距離是

2)數(shù)軸上P、Q兩點(diǎn)的距離為3,且點(diǎn)P表示的數(shù)是2,則點(diǎn)Q表示的數(shù)是___________.

3)點(diǎn)A、BC在數(shù)軸上分別表示有理數(shù)、、1,那么AB的距離與AC的距離之和可表示為

4)滿足的整數(shù)的值為 .

5的最小值為 .

查看答案和解析>>

同步練習(xí)冊(cè)答案