【題目】如圖,在梯形ABCD中,AB∥CD.
(1)已知∠A=∠B,求證:AD=BC;
(2)已知AD=BC,求證:∠A=∠B.
【答案】(1)詳見(jiàn)解析;(2)詳見(jiàn)解析.
【解析】
(1)過(guò)C作CE∥DA,可證明四邊形ADCE是平行四邊形,根據(jù)平行四邊形的性質(zhì)可得AD=EC,根據(jù)DA∥CE,可得∠A=∠CEB,根據(jù)等量代換可得∠CEB=∠B,進(jìn)而得到EC=BC,從而可得AD=BC;
(2)根據(jù)CE∥DA,AB∥CD,可證明四邊形AECD是平行四邊形,根據(jù)平行四邊形的性質(zhì)可得AD=EC,再由條件AD=BC可得EC=BC,根據(jù)等邊對(duì)等角可得∠B=∠CEB,再根據(jù)平行線的性質(zhì)可得∠A=∠CEB,利用等量代換可得∠B=∠A.
解:(1)如圖,過(guò)點(diǎn)C作CE∥DA,交AB于點(diǎn)E
∵CE∥DA,AB∥CD
∴四邊形AECD是平行四邊形
∴AD=EC
又∵CE∥DA
∴∠A=∠CEB
又∵∠A=∠B
∴∠CEB=∠B
∴EC=BC
∴AD=BC
(2)∵CE∥DA,AB∥CD
∴四邊形AECD是平行四邊形
∴AD=EC
又∵AD=BC
∴EC=BC
∴∠CEB=∠B
又∵CE∥DA
∴∠CEB=∠A
∴∠B=∠A
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB為⊙O的直徑,點(diǎn)E在⊙O上,∠EAB的平分線交⊙O于點(diǎn)C,過(guò)點(diǎn)C作AE的垂線,垂足為D,直線DC與AB的延長(zhǎng)線交于點(diǎn)P.
(1)判斷直線PC與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若tan∠P=,AD=6,求線段AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=ax2+bx+c的頂點(diǎn)為D(﹣1,2),與x軸的一個(gè)交點(diǎn)A在點(diǎn)(﹣3,0)和
(﹣2,0)之間,其部分圖象如下圖,則以下結(jié)論:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有兩個(gè)相等的實(shí)數(shù)根.其中正確結(jié)論的個(gè)數(shù)為( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表給出了1班6名學(xué)生的身高情況與全班平均身高的差值(單位:厘米)
學(xué)生 | A | B | C | D | E | F |
身高 | 157 | 162 | 159 | 152 | 163 | 164 |
身高與全班平均身高的差值 | -3 | +2 | -1 | a | +3 | b |
(1)列式計(jì)算表中數(shù)據(jù)a和b
(2)這6名學(xué)生的平均身高與全班學(xué)生的平均身高相比,在數(shù)值上有什么關(guān)系?(通過(guò)計(jì)算回答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校準(zhǔn)備購(gòu)買(mǎi)A、B兩種型號(hào)籃球,詢(xún)問(wèn)了甲、乙兩間學(xué)校了解這兩款籃球的價(jià)格,下表是甲、乙兩間學(xué)校購(gòu)買(mǎi)A、B兩種型號(hào)籃球的情況:
購(gòu)買(mǎi)學(xué)校 | 購(gòu)買(mǎi)型號(hào)及數(shù)量(個(gè)) | 購(gòu)買(mǎi)支出款項(xiàng)(元) | |
A | B | ||
甲 | 3 | 8 | 622 |
乙 | 5 | 4 | 402 |
(1)求A、B兩種型號(hào)的籃球的銷(xiāo)售單價(jià);
(2)若該學(xué)校準(zhǔn)備用不多于1000元的金額購(gòu)買(mǎi)這兩種型號(hào)的籃球共20個(gè),求A種型號(hào)的籃球最少能采購(gòu)多少個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠一周計(jì)劃每日生產(chǎn)自行車(chē)100輛,由于工人實(shí)行輪休,每日上班人數(shù)不一定相等,實(shí)際每日生產(chǎn)量與計(jì)劃量相比情況如下表(以計(jì)劃量為標(biāo)準(zhǔn),增加的車(chē)輛數(shù)記為正數(shù),減少的車(chē)輛數(shù)記為負(fù)數(shù)):
(1)生產(chǎn)量最多的一天比生產(chǎn)量最少的一天多生產(chǎn)多少輛?
(2)本周總的生產(chǎn)量是多少輛?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表是某校九年級(jí)(1)班20名學(xué)生某次數(shù)學(xué)測(cè)驗(yàn)的成績(jī)統(tǒng)計(jì)表:
成績(jī)(分) | 60 | 70 | 80 | 90 | 100 |
人數(shù)(人) | 1 | 5 | x | y | 2 |
(1)若這20名學(xué)生成績(jī)的平均分?jǐn)?shù)為82分,求x和y的值;
(2)在(1)的條件下,設(shè)這20名學(xué)生本次測(cè)驗(yàn)成績(jī)的眾數(shù)為a,中位數(shù)為b,求a,b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在學(xué)習(xí)絕對(duì)值后,我們知道,表示數(shù)在數(shù)軸上的對(duì)應(yīng)點(diǎn)與原點(diǎn)的距離. 如:表示5在數(shù)軸上的對(duì)應(yīng)點(diǎn)到原點(diǎn)的距離.而,即表示5、0在數(shù)軸上對(duì)應(yīng)的兩點(diǎn)之間的距離.類(lèi)似的,有:表示5、3在數(shù)軸上對(duì)應(yīng)的兩點(diǎn)之間的距離;,所以表示5、在數(shù)軸上對(duì)應(yīng)的兩點(diǎn)之間的距離. 一般地,點(diǎn)A、B在數(shù)軸上分別表示有理數(shù)、,那么A、B之間的距離可表示為.
請(qǐng)根據(jù)絕對(duì)值的意義并結(jié)合數(shù)軸解答下列問(wèn)題:
(1)數(shù)軸上表示2和5的兩點(diǎn)之間的距離是______;數(shù)軸上表示1和-3的兩點(diǎn)之間的距離是 ;
(2)數(shù)軸上P、Q兩點(diǎn)的距離為3,且點(diǎn)P表示的數(shù)是2,則點(diǎn)Q表示的數(shù)是___________.
(3)點(diǎn)A、B、C在數(shù)軸上分別表示有理數(shù)、、1,那么A到B的距離與A到C的距離之和可表示為 ;
(4)滿足的整數(shù)的值為 .
(5)的最小值為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com