【題目】如圖,已知AD、AE分別是RtABC的高和中線,AB9cm,AC12cm,BC15cm,試求:

1AD的長度;

2)△ACE和△ABE的周長的差.

【答案】(1)AD的長度為cm;(2)△ACE和△ABE的周長的差是3cm

【解析】

1)利用直角三角形的面積法來求線段AD的長度;

2)由于AE是中線,那么BECE,再表示△ACE的周長和△ABE的周長,化簡可得△ACE的周長﹣△ABE的周長=ACAB即可.

解:(1)∵∠BAC90°,AD是邊BC上的高,

SACB=ABACBCAD,

AB9cm,AC12cm,BC15cm

ADcm),

AD的長度為cm;

2)∵AEBC邊上的中線,

BECE,

∴△ACE的周長﹣△ABE的周長=AC+AE+CE﹣(AB+BE+AE)=ACAB1293cm),

即△ACE和△ABE的周長的差是3cm

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCD(AB<AD).

(1)請用直尺和圓規(guī)按下列步驟作圖,保留作圖痕跡;
①以點(diǎn)A為圓心,以AD的長為半徑畫弧交邊BC于點(diǎn)E,連接AE;
②作∠DAE的平分線交CD于點(diǎn)F;
③連接EF;
(2)在(1)作出的圖形中,若AB=8,AD=10,則tan∠FEC的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2+bx+ca0)的圖象經(jīng)過點(diǎn)A1,2).

1)當(dāng)b1c=﹣4時,求該二次函數(shù)的表達(dá)式;

2)已知點(diǎn)Mt1,5),Nt+1,5)在該二次函數(shù)的圖象上,請直接寫出t的取值范圍;

3)當(dāng)a1時,若該二次函數(shù)的圖象與直線y3x1交于點(diǎn)PQ,將此拋物線在直線PQ下方的部分圖象記為C

①試判斷此拋物線的頂點(diǎn)是否一定在圖象C上?若是,請證明;若不是,請舉反例;

②已知點(diǎn)P關(guān)于拋物線對稱軸的對稱點(diǎn)為P′,若P′在圖象C上,求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與x軸交于點(diǎn)A(﹣5,0)和點(diǎn)B(3,0).與y軸交于點(diǎn)C(0,5).有一寬度為1,長度足夠的矩形(陰影部分)沿x軸方向平移,與y軸平行的一組對邊交拋物線于點(diǎn)P和Q,交直線AC于點(diǎn)M和N.交x軸于點(diǎn)E和F.

(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)M和N都在線段AC上時,連接MF,如果sin∠AMF= ,求點(diǎn)Q的坐標(biāo);
(3)在矩形的平移過程中,當(dāng)以點(diǎn)P,Q,M,N為頂點(diǎn)的四邊形是平行四邊形時,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)學(xué)雷鋒、樹新風(fēng)、做文明中學(xué)生號召,某校開展了志愿者服務(wù)活動,活動項目有戒毒宣傳”、“文明交通崗”、“關(guān)愛老人”、“義務(wù)植樹”、“社區(qū)服務(wù)等五項,活動期間,隨機(jī)抽取了部分學(xué)生對志愿者服務(wù)情況進(jìn)行調(diào)查,結(jié)果發(fā)現(xiàn),被調(diào)查的每名學(xué)生都參與了活動,最少的參與了1項,最多的參與了5項,根據(jù)調(diào)查結(jié)果繪制了如圖所示不完整的折線統(tǒng)計圖和扇形統(tǒng)計圖.

(1)被隨機(jī)抽取的學(xué)生共有多少名?

(2)在扇形統(tǒng)計圖中,求活動數(shù)為3項的學(xué)生所對應(yīng)的扇形圓心角的度數(shù),并補(bǔ)全折線統(tǒng)計圖;

(3)該校共有學(xué)生2000人,估計其中參與了4項或5項活動的學(xué)生共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過A(﹣1,0),B(5,0),C(0,- )三點(diǎn).

(1)求拋物線的解析式;
(2)在拋物線的對稱軸上有一點(diǎn)P,使PA+PC的值最小,求點(diǎn)P的坐標(biāo);
(3)點(diǎn)M為x軸上一動點(diǎn),在拋物線上是否存在一點(diǎn)N,使以A,C,M,N四點(diǎn)構(gòu)成的四邊形為平行四邊形?若存在,求點(diǎn)N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,折疊長方形紙片ABCD,先折出折痕(對角線)BD,再折疊使AD邊與BD重合,得折痕DG,若AB=4,BC=3,求AG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=3x與雙曲線y= (k≠0,且x>0)交于點(diǎn)A,點(diǎn)A的橫坐標(biāo)是1.

(1)求點(diǎn)A的坐標(biāo)及雙曲線的解析式;
(2)點(diǎn)B是雙曲線上一點(diǎn),且點(diǎn)B的縱坐標(biāo)是1,連接OB,AB,求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,不添加輔助線,請寫出一個能判斷EB∥AC的條件:___________

查看答案和解析>>

同步練習(xí)冊答案