【題目】如圖, AB與CD交于點O, OE⊥CD, OF⊥AB, ∠BOD=25°, 則∠AOE=______ , ∠DOF=______,∠AOC=______.
【答案】65° 115° 25°
【解析】
根據(jù)垂直的定義可得∠DOE=90°,再根據(jù)平角等于180°列式計算即可求出∠AOE;根據(jù)垂直的定義可得∠BOF=90°,再根據(jù)∠DOF=∠BOF+∠BOD代入數(shù)據(jù)進(jìn)行計算即可得解;根據(jù)對頂角相等可得∠AOC=∠BOD.
解:①∵OE⊥CD,
∴∠DOE=90°,
∵∠BOD=25°,
∴∠AOE=180°∠BOD∠DOE=180°25°90°=65°;
②∵OF⊥AB,
∴∠BOF=90°,
∴∠DOF=∠BOF+∠BOD=90°+25°=115°;
③∠AOC=∠BOD=25°(對頂角相等).
故答案為:65°,115°,25°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:的兩條高交于點,點分別是,的中點,連接.
求證:垂直平分;
若.判斷以為頂點的四邊形的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對任意一個三位數(shù)n,如果n滿足各個數(shù)位上的數(shù)字互不相同,且都不為零,那么稱這個數(shù)為“相異數(shù)”,將一個“相異數(shù)”任意兩個數(shù)位上的數(shù)字對調(diào)后可以得到三個不同的新三位數(shù),把這三個新三位數(shù)的和與111的商記為F(n).例如n=123,對調(diào)百位與十位上的數(shù)字得到213,對調(diào)百位與個位上的數(shù)字得到321,對調(diào)十位與個位上的數(shù)字得到132,這三個新三位數(shù)的和為213+321+132=666,666÷111=6,所以F(123)=6.
(1)計算:F(243),F(xiàn)(617);
(2)若s,t都是“相異數(shù)”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整數(shù)),規(guī)定:k= ,當(dāng)F(s)+F(t)=18時,求k的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A,B,C,D,E,F(xiàn)是邊長為1的正六邊形的頂點,連接任意兩點均可得到一條線段.在連接兩點所得的所有線段中任取一條線段,取到長度為 的線段的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,池塘邊有塊長為20m,寬為10m的長方形土地,現(xiàn)在將其余三面留出寬都是xm的小路,中間余下的長方形部分做菜地,用含x的式子表示:
(1)菜地的長a= m,菜地的寬b= m;菜地的周長C= m;
(2)求當(dāng)x=1m時,菜地的周長C.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CM⊥AB于點M,∠ACB的平分線CN交AB于點N,過點N作ND∥AC交BC于點D.若∠A=78°,∠B=50°.
求:①∠CND的度數(shù);②∠MCN的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,矩形中,,,菱形的三個頂點,,分別在矩形的邊,,上,,連接.
(1)若,求證四邊形為正方形;
(2)若,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,BN,DN分別平分∠ABM,∠MDC,試問∠M與∠N之間的數(shù)量關(guān)系如何?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com