【題目】黔東南州某校吳老師組織九(1)班同學(xué)開展數(shù)學(xué)活動,帶領(lǐng)同學(xué)們測量學(xué)校附近一電線桿的高.已知電線桿直立于地面上,某天在太陽光的照射下,電線桿的影子(折線BCD)恰好落在水平地面和斜坡上,在D處測得電線桿頂端A的仰角為30°,在C處測得電線桿頂端A得仰角為45°,斜坡與地面成60°角,CD=4m,請你根據(jù)這些數(shù)據(jù)求電線桿的高AB.

(結(jié)果精確到1m,參考數(shù)據(jù):1.4,1.7)

【答案】11m.

【解析】

試題分析:延長AD交BC的延長線于G,作DHBG于H,由三角函數(shù)求出求出CH、DH的長,得出CG,設(shè)AB=xm,根據(jù)正切的定義求出BG,得出方程,解方程即可.

試題解析:延長AD交BC的延長線于G,作DHBG于H,如圖所示:

在RtDHC中,DCH=60°,CD=4,則CH=CDcosDCH=4×cos60°=2,DH=CDsinDCH=4×sin60°=DHBG,G=30°,HG===6,CG=CH+HG=2+6=8,設(shè)AB=xm,ABBG,G=30°,BCA=45°,BC=x,BG===x,BG﹣BC=CG,x﹣x=8,解得:x11(m);

答:電線桿的高為11m.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的平面直角坐標(biāo)系中,

(1)畫出函數(shù)的圖象;

(2)填空:請寫出圖象與x軸的交點(diǎn)A(___,___)的坐標(biāo),與y軸交點(diǎn)B(_____)的坐標(biāo);

(3)(2)的條件下,求出△AOB的面積;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠C=90°,AC=BC,AD平分∠CABBC于點(diǎn)DDE⊥AB,垂足為E,且AB=6cm,則△DEB的周長為( )

A. 4cm B. 6cm C. 8cm D. 10cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角三角形ABC中,∠ABC=90°.

(1)先作∠ACB的平分線;設(shè)它交AB邊于點(diǎn)O,再以點(diǎn)O為圓心,OB為半徑作⊙O(尺規(guī)作圖,保留作圖痕跡,不寫作法);

(2)證明:AC是所作⊙O的切線;

(3)BC=A=30°,求△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某校教學(xué)樓AB后方有一斜坡,已知斜坡CD的長為12米,坡角α為60°,根據(jù)有關(guān)部門的規(guī)定,∠α≤39°時(shí),才能避免滑坡危險(xiǎn),學(xué)校為了消除安全隱患,決定對斜坡CD進(jìn)行改造,在保持坡腳C不動的情況下,學(xué)校至少要把坡頂D向后水平移動多少米才能保證教學(xué)樓的安全?(結(jié)果取整數(shù))

(參考數(shù)據(jù):sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車分別從AB兩地同時(shí)相向勻速行駛,當(dāng)乙車到達(dá)A地后,繼續(xù)保持原速向遠(yuǎn)離B的方向行駛,而甲車到達(dá)B地后立即掉頭,并保持原速與乙車同向行駛,經(jīng)過15小時(shí)后兩車同時(shí)到達(dá)距A300千米的C地(中途休息時(shí)間忽略不計(jì)).設(shè)兩車行駛的時(shí)間為x(小時(shí)),兩車之間的距離為y(千米),yx之間的函數(shù)關(guān)系如圖所示,則當(dāng)甲車到達(dá)B地時(shí),乙車距A_____千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC⊙O的直徑,AC=4,B、D分別在AC兩側(cè)的圓上,∠BAD=60°,BDAC的交點(diǎn)為E

1求點(diǎn)OBD的距離及∠OBD的度數(shù);

2DE=2BE,求的值CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果關(guān)于x的方程x2-ax+a2-3=0至少有一個(gè)正根,則實(shí)數(shù)a的取值范圍是( 。

A. -2<a<2 B. <a≤2 C. <a≤2 D. ≤a≤2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:有一個(gè)內(nèi)角為90°,且對角線相等的四邊形稱為準(zhǔn)矩形.

(1)①如圖1,準(zhǔn)矩形ABCD中,∠ABC=90°,若AB=2,BC=3,則BD=   ;

②如圖2,直角坐標(biāo)系中,A(0,3),B(5,0),若整點(diǎn)P使得四邊形AOBP是準(zhǔn)矩形,則點(diǎn)P的坐標(biāo)是   ;(整點(diǎn)指橫坐標(biāo)、縱坐標(biāo)都為整數(shù)的點(diǎn))

(2)如圖3,正方形ABCD中,點(diǎn)E、F分別是邊AD、AB上的點(diǎn),且CF⊥BE,求證:四邊形BCEF是準(zhǔn)矩形;

(3)已知,準(zhǔn)矩形ABCD中,∠ABC=90°,∠BAC=60°,AB=2,當(dāng)△ADC為等腰三角形時(shí),請直接寫出這個(gè)準(zhǔn)矩形的面積是   

查看答案和解析>>

同步練習(xí)冊答案