【題目】如圖,在菱形ABCD中,AB=2,∠DAB=60°,點E是AD邊的中點,點M是AB邊上的一個動點(不與點A重合),延長ME交CD的延長線于點N,連接MD,AN.
(1)求證:四邊形AMDN是平行四邊形.
(2)當AM的值為何值時,四邊形AMDN是矩形?請說明理由.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,OABC是平行四邊形,對角線OB在軸正半軸上,位于第一象限的點A和第二象限的點C分別在雙曲線y=和y=的一支上,分別過點A、C作x軸的垂線,垂足分別為M和N,則有以下的結論:①;②陰影部分面積是(k1+k2);③當∠AOC=90°時,|k1|=|k2|;④若OABC是菱形,則兩雙曲線既關于x軸對稱,也關于y軸對稱.其中正確的結論是( )
A.①②B.①④C.③④D.①②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法:(1)相反數(shù)是本身的數(shù)是正數(shù);(2)兩數(shù)相減,差小于被減數(shù);(3)絕對值等于它相反數(shù)的數(shù)是負數(shù);(4)倒數(shù)是它本身的數(shù)是1;(5)若,則a=b;(6)沒有最大的正數(shù),但有最大的負整數(shù).其中正確的個數(shù)( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知函數(shù)的圖象如圖,有以下結論:
①m<0;
②在每一個分支上,y隨x的增大而增大;
③若點A(-1,a)、B(2,b)在圖象上,則a<b;
④若點P(x,y)在圖象上,則點P1(-x,-y)也在圖象上.
其中正確結論的個數(shù)為( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將兩塊直角三角尺的直角頂點O疊放在一起.
(1)如果∠BOD=60°,那么∠AOC= ,如果∠AOC=130°,那么∠BOD= .
(2)猜想∠AOC與∠BOD的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,拋物線C1:
(1) ① 無論m取何值,拋物線經(jīng)過定點P
② 隨著m的取值的變化,頂點M(x,y)隨之變化,y是x的函數(shù),則點M滿足的函數(shù)C2的關系式為__________________
(2) 如圖1,拋物線C1與x軸僅有一個公共點,請在圖1畫出頂點M滿足的函數(shù)C2的大致圖象,平行于y軸的直線l分別交C1、C2于點A、B.若△PAB為等腰直角三角形,判斷直線l滿足的條件,并說明理由
(3) 如圖2,二次函數(shù)的圖象C1的頂點M在第二象限、交x軸于另一點C,拋物線上點M與點P之間一點D的橫坐標為-2,連接PD、CD、CM、DM.若S△PCD=S△MCD,求二次函數(shù)的解析式
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知直線y=x+3與x軸交于點A,與y軸交于點B,將直線在x軸下方的部分沿x軸翻折,得到一個新函數(shù)的圖象(圖中的“V形折線”).
(1)類比研究函數(shù)圖象的方法,請列舉新函數(shù)的兩條性質,并求新函數(shù)的解析式;
(2)如圖2,雙曲線y=與新函數(shù)的圖象交于點C(1,a),點D是線段AC上一動點(不包括端點),過點D作x軸的平行線,與新函數(shù)圖象交于另一點E,與雙曲線交于點P.
①試求△PAD的面積的最大值;
②探索:在點D運動的過程中,四邊形PAEC能否為平行四邊形?若能,求出此時點D的坐標;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一條筆直的東西向海岸線l上有一長為1.5km的碼頭MN和燈塔C,燈塔C距碼頭的東端N有20km.一輪船以36km/h的速度航行,上午10:00在A處測得燈塔C位于輪船的北偏西30°方向,上午10:40在B處測得燈塔C位于輪船的北偏東60°方向,且與燈塔C相距12km.
(1)若輪船照此速度與航向航向,何時到達海岸線?
(2)若輪船不改變航向,該輪船能否?吭诖a頭?請說明理由(參考數(shù)據(jù): ≈1.4, ≈1.7).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com