【題目】如圖,在平面直角坐標(biāo)系中,直線與軸,軸分別相交于點(diǎn),點(diǎn)在射線上,點(diǎn)在射線上,且,以為鄰邊作平行四邊形.設(shè)點(diǎn)的坐標(biāo)為,平行四邊形在軸下方部分的面積為.求:
(1)線段的長(zhǎng);
(2)關(guān)于的函數(shù)解析式,并直接寫(xiě)出自變量的取值范圍.
【答案】(1)5;(2)
【解析】
(1)由直線y=-與令x=0,或y=0,分別求出對(duì)應(yīng)的y、x的值,從而確定A、B兩點(diǎn)的坐標(biāo);
(2)分兩種情況進(jìn)行分別探究,①當(dāng)<m≤3時(shí),②當(dāng)0<m≤時(shí),分別畫(huà)出相應(yīng)的圖象,根據(jù)三角形相似,求出相應(yīng)的邊的長(zhǎng)用含有m的代數(shù)式表示,再表示面積,從而確定在不同情況下S與m的函數(shù)解析式.
解:(1)當(dāng)時(shí),,
當(dāng)時(shí),,
∴直線與軸點(diǎn)交,與軸交點(diǎn)
∴,,
∴,
因此:線段的長(zhǎng)為5.
(2)當(dāng)時(shí),如圖,
∵,,
∴,
由∽得:
,即:,解得:;
①當(dāng)時(shí),如圖1所示:,此時(shí)點(diǎn)在的內(nèi)部,
();
②當(dāng)時(shí),如圖2所示:過(guò)點(diǎn)作,垂足為,
此時(shí)在軸下方的三角形與全等,
∵∽,
∴,
∴,同理:,
∴,
∴,
即:,()
③當(dāng)時(shí),如圖3所示:過(guò)點(diǎn)作軸,軸,垂足為,
同理得:,,
∴,,
∴
∴
答:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于半圓,AB為直徑,過(guò)點(diǎn)A作直線MN,若∠MAC=∠ABC.
(1)求證:MN是半圓的切線.
(2)設(shè)D是弧AC的中點(diǎn),連接BD交AC于G,過(guò)D作DE⊥AB于E,交AC于F,求證:FD=FG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】紅樹(shù)林學(xué)校在七年級(jí)新生中舉行了全員參加的“防溺水”安全知識(shí)競(jìng)賽,試卷題目共10題,每題10分.現(xiàn)分別從三個(gè)班中各隨機(jī)取10名同學(xué)的成績(jī)(單位:分),收集數(shù)據(jù)如下:
1班:90,70,80,80,80,80,80,90,80,100;
2班:70,80,80,80,60,90,90,90,100,90;
3班:90,60,70,80,80,80,80,90,100,100.
整理數(shù)據(jù):
分?jǐn)?shù) 人數(shù) 班級(jí) | 60 | 70 | 80 | 90 | 100 |
1班 | 0 | 1 | 6 | 2 | 1 |
2班 | 1 | 1 | 3 | 1 | |
3班 | 1 | 1 | 4 | 2 | 2 |
分析數(shù)據(jù):
平均數(shù) | 中位數(shù) | 眾數(shù) | |
1班 | 83 | 80 | 80 |
2班 | 83 | ||
3班 | 80 | 80 |
根據(jù)以上信息回答下列問(wèn)題:
(1)請(qǐng)直接寫(xiě)出表格中的值;
(2)比較這三組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)和眾數(shù),你認(rèn)為哪個(gè)班的成績(jī)比較好?請(qǐng)說(shuō)明理由;
(3)為了讓學(xué)生重視安全知識(shí)的學(xué)習(xí),學(xué)校將給競(jìng)賽成績(jī)滿(mǎn)分的同學(xué)頒發(fā)獎(jiǎng)狀,該校七年級(jí)新生共570人,試估計(jì)需要準(zhǔn)備多少?gòu)埅?jiǎng)狀?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB,CD是圓O的直徑,AE是圓O的弦,且AE∥CD,過(guò)點(diǎn)C的圓O切線與EA的延長(zhǎng)線交于點(diǎn)P,連接AC.
(1)求證:AC平分∠BAP;
(2)求證:PC2=PAPE;
(3)若AE-AP=PC=4,求圓O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解八年級(jí)男生“立定跳遠(yuǎn)”成績(jī)的情況,隨機(jī)選取該年級(jí)部分男生進(jìn)行測(cè)試,以下是根據(jù)測(cè)試成績(jī)繪制的統(tǒng)計(jì)圖表的一部分.
成績(jī)等級(jí) | 頻數(shù)(人) | 頻率 |
優(yōu)秀 | 15 | 0.3 |
良好 | ||
及格 | ||
不及格 | 5 |
根據(jù)以上信息,解答下列問(wèn)題
(1)被測(cè)試男生中,成績(jī)等級(jí)為“優(yōu)秀”的男生人數(shù)為 人,成績(jī)等級(jí)為“及格”的男生人數(shù)占被測(cè)試男生總?cè)藬?shù)的百分比為 %;
(2)被測(cè)試男生的總?cè)藬?shù)為 人,成績(jī)等級(jí)為“不及格”的男生人數(shù)占被測(cè)試男生總?cè)藬?shù)的百分比為 %;
(3)若該校八年級(jí)共有180名男生,根據(jù)調(diào)查結(jié)果,估計(jì)該校八年級(jí)男生成績(jī)等級(jí)為“良好”的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】兩條拋物線與的頂點(diǎn)相同.
(1)求拋物線的解析式;
(2)點(diǎn)是拋物找在第四象限內(nèi)圖象上的一動(dòng)點(diǎn),過(guò)點(diǎn)作軸,為垂足,求的最大值;
(3)設(shè)拋物線的頂點(diǎn)為點(diǎn),點(diǎn)的坐標(biāo)為,問(wèn)在的對(duì)稱(chēng)軸上是否存在點(diǎn),使線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)90°得到線段,且點(diǎn)恰好落在拋物線上?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某化工材料經(jīng)銷(xiāo)商購(gòu)進(jìn)一種化工材料若干千克,成本為每千克30元,物價(jià)部門(mén)規(guī)定其銷(xiāo)售單價(jià)不低于成本價(jià)且不高于成本價(jià)的2倍,經(jīng)試銷(xiāo)發(fā)現(xiàn),日銷(xiāo)售量y(千克)與銷(xiāo)售單價(jià)x(元)符合一次函數(shù)關(guān)系,如圖所示.
(1)求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2)若在銷(xiāo)售過(guò)程中每天還要支付其他費(fèi)用450元,當(dāng)銷(xiāo)售單價(jià)為多少時(shí),該公司日獲利最大?最大獲利是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題提出:
(1)如圖1,已知△ABC,試確定一點(diǎn)D,使得以A,B,C,D為頂點(diǎn)的四邊形為平行四邊形,請(qǐng)畫(huà)出這個(gè)平行四邊形;
問(wèn)題探究:
(2)如圖2,在矩形ABCD中,AB=4,BC=10,若要在該矩形中作出一個(gè)面積最大的△BPC,且使∠BPC=90°,求滿(mǎn)足條件的點(diǎn)P到點(diǎn)A的距離;
問(wèn)題解決:
(3)如圖3,有一座草根塔A,按規(guī)定,要以塔A為對(duì)稱(chēng)中心,建一個(gè)面積盡可能大的形狀為平行四邊形的草根景區(qū)BCDE。根據(jù)實(shí)際情況,要求頂點(diǎn)B是定點(diǎn),點(diǎn)B到塔A的距離為50米,∠CBE=120°,那么,是否可以建一個(gè)滿(mǎn)足要求的面積最大的平行四邊形景區(qū)BCDE?若可以,求出滿(mǎn)足要求的平行四邊形BCDE的最大面積;若不可以,請(qǐng)說(shuō)明理由。(塔A的占地面積忽略不計(jì))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解學(xué)生參加戶(hù)外活動(dòng)的情況,某中學(xué)對(duì)學(xué)生每天參加戶(hù)外活動(dòng)的時(shí)間進(jìn)行抽樣調(diào)查,并將調(diào)查結(jié)果繪制成如圖兩幅不完整的統(tǒng)計(jì)圖,根據(jù)圖示,請(qǐng)回答下列問(wèn)題:
(I).被抽查的學(xué)生有_____人,抽查的學(xué)生中每天戶(hù)外活動(dòng)時(shí)間是1.5小時(shí)的有_____人;
(II).求被抽查的學(xué)生的每天戶(hù)外活動(dòng)時(shí)間的眾數(shù)、中位數(shù)和平均數(shù);
(III).該校共有1200名學(xué)生,請(qǐng)估計(jì)該校每天戶(hù)外活動(dòng)時(shí)間超過(guò)1小時(shí)的學(xué)生有多少人?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com