【題目】如圖1,在矩形ABCD中,PCD邊上一點(diǎn)(DP<CP),APB=90°.將ADP沿AP翻折得到AD′P,PD′的延長(zhǎng)線交邊AB于點(diǎn)M,過(guò)點(diǎn)BBNMPDC于點(diǎn)N.

(1)求證:AD2=DPPC;

(2)請(qǐng)判斷四邊形PMBN的形狀,并說(shuō)明理由;

(3)如圖2,連接AC,分別交PM,PB于點(diǎn)E,F(xiàn).若=,求的值.

【答案】(1)證明見(jiàn)解析;(2)四邊形PMBN是菱形,理由見(jiàn)解析;(3)

【解析】(1)過(guò)點(diǎn)PPGAB于點(diǎn)G,易知四邊形DPGA,四邊形PCBG是矩形,所以AD=PG,DP=AG,GB=PC,易證APG∽△PBG,所以PG2=AGGB,即AD2=DPPC;

(2)DPAB,所以∠DPA=PAM,由題意可知:∠DPA=APM,所以∠PAM=APM,由于∠APB-PAM=APB-APM,即∠ABP=MPB,從而可知PM=MB=AM,又易證四邊形PMBN是平行四邊形,所以四邊形PMBN是菱形;

(3)由于,可設(shè)DP=k,AD=2k,由(1)可知:AG=DP=k,PG=AD=2k,從而求出GB=PC=4k,AB=AG+GB=5k,由于CPAB,從而可證PCF∽△BAF,PCE∽△MAE,從而可得,,從而可求出EF=AF-AE=AC-AC=AC,從而可得

1)過(guò)點(diǎn)PPGAB于點(diǎn)G,

∴易知四邊形DPGA,四邊形PCBG是矩形,

AD=PG,DP=AG,GB=PC

∵∠APB=90°,

∴∠APG+GPB=GPB+PBG=90°,

∴∠APG=PBG,

∴△APG∽△PBG,

,

PG2=AGGB,

AD2=DPPC;

(2)DPAB,

∴∠DPA=PAM,

由題意可知:∠DPA=APM,

∴∠PAM=APM,

∵∠APB-PAM=APB-APM,

即∠ABP=MPB

AM=PM,PM=MB,

PM=MB,

又易證四邊形PMBN是平行四邊形,

∴四邊形PMBN是菱形;

(3)由于

可設(shè)DP=k,AD=2k,

由(1)可知:AG=DP=k,PG=AD=2k,

PG2=AGGB,

4k2=kGB,

GB=PC=4k,

AB=AG+GB=5k,

CPAB,

∴△PCF∽△BAF,

,

又易證:PCE∽△MAE,AM=AB=,

EF=AF-AE=AC-AC=AC,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在綜合實(shí)踐課上,小聰所在小組要測(cè)量一條河的寬度,如圖,河岸EFMN,小聰在河岸MN上點(diǎn)A處用測(cè)角儀測(cè)得河對(duì)岸小樹(shù)C位于東北方向,然后沿河岸走了30米,到達(dá)B處,測(cè)得河對(duì)岸電線桿D位于北偏東30°方向,此時(shí),其他同學(xué)測(cè)得CD=10米.請(qǐng)根據(jù)這些數(shù)據(jù)求出河的寬度.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC,ACB=90°,D、E分別是AB、AC的中點(diǎn),連接CD,過(guò)EEFDCBC的延長(zhǎng)線于F若平行四邊形CDEF的周長(zhǎng)是25cm,AC的長(zhǎng)為5cm,的長(zhǎng)是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次尋寶游戲中,尋寶人在如圖2369所示的藏寶圖中找到了兩個(gè)標(biāo)志點(diǎn)A(2,3),B(41),A,B兩點(diǎn)到寶藏點(diǎn)的距離相等,則寶藏點(diǎn)的可能坐標(biāo)是________(填一個(gè)即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB6BC8,點(diǎn)EBC的中點(diǎn),點(diǎn)P為對(duì)角線BD上的動(dòng)點(diǎn),設(shè)BPt(t0),作PHBC于點(diǎn)H,連接EP并延長(zhǎng)至點(diǎn)F,使得PFPE,作點(diǎn)F關(guān)于BD的對(duì)稱點(diǎn)G,FGBD于點(diǎn)Q,連接GHGE

(1)求證:EGPQ;

(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到對(duì)角線BD中點(diǎn)時(shí),求△EFG的周長(zhǎng);

(3)在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,△GEH是否可以為等腰三角形?若可以,求出t的值;若不可以,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】央視熱播節(jié)目“朗讀者”激發(fā)了學(xué)生的閱讀興趣,某校為滿足學(xué)生的閱讀需求,欲購(gòu)進(jìn)一批學(xué)生喜歡的圖書(shū),學(xué)校組織學(xué)生會(huì)成員隨機(jī)抽取部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,被調(diào)查學(xué)生須從“文史類、社科類、小說(shuō)類、生活類”中選擇自己喜歡的一類,根據(jù)調(diào)查結(jié)果繪制了統(tǒng)計(jì)圖(未完成),請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:

1)此次共調(diào)查了   名學(xué)生;

2)將條形統(tǒng)計(jì)圖1補(bǔ)充完整;

3)圖2中“小說(shuō)類”所在扇形的圓心角為   度;

4)若該校共有學(xué)生2000人,估計(jì)該校喜歡“社科類”書(shū)籍的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,已知ABCD,M、NP分別是AD、BC、BD的中點(diǎn)∠ABD20°,∠BDC70°,則∠NMP的度數(shù)為( 。

A. 50° B. 25° C. 15° D. 20

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線mykxk0)與直線n相交于點(diǎn)C,點(diǎn)A、B為直線n與坐標(biāo)軸的交點(diǎn),∠COA60°,點(diǎn)PO點(diǎn)出發(fā)沿線段OC向點(diǎn)C勻速運(yùn)動(dòng),速度為每秒1個(gè)單位,同時(shí)點(diǎn)Q從點(diǎn)A出發(fā)沿線段AO向點(diǎn)O勻速運(yùn)動(dòng),速度為每秒2個(gè)單位,設(shè)運(yùn)動(dòng)時(shí)間為t秒.

1k   

2)記△POQ的面積為S,求t為何值時(shí)S取得最大值;

3)當(dāng)△POQ的面積最大時(shí),以PQ為直徑的圓與直線n有怎樣的位置關(guān)系,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)不透明的布袋里裝有4個(gè)大小,質(zhì)地都相同的乒乓球,球面上分別標(biāo)有數(shù)字1,-2,3,-4,小明先從布袋中隨機(jī)摸出一個(gè)球(不放回去),再?gòu)氖O碌?/span>3個(gè)球中隨機(jī)摸出第二個(gè)乒乓球.

(1)共有   種可能的結(jié)果.

(2)請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法求兩次摸出的乒乓球的數(shù)字之積為偶數(shù)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案