【題目】如圖,在△ABC中,AB=AC=15,且△ABC的面積為90,D是線段AB上的動(dòng)點(diǎn)(包含端點(diǎn)),若線段CD的長(zhǎng)為正整數(shù),則點(diǎn)D的個(gè)數(shù)共有( )
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)
【答案】C
【解析】
首先過(guò)C作CE⊥AB,當(dāng)D與E重合時(shí),CE最短,首先利用三角形面積求得CE的長(zhǎng),然后可得CD的取值范圍,進(jìn)而可得答案.
解:過(guò)C作CE⊥AB,
∵AB=AC=15,且△ABC的面積為90,
∴S△ABC==90,
∴CE=12,
∴AE==9,
∴BE=15﹣9=6,
∴CB=,
∵D是線段AB上的動(dòng)點(diǎn)(含端點(diǎn)A、B).
∴12≤CD≤15,
∴CD=12或13或14或15,
∵線段CD長(zhǎng)為正整數(shù),
∴CD的可以有5條,長(zhǎng)為15,14,13,12,13
∴點(diǎn)D的個(gè)數(shù)共有5個(gè),
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為旋轉(zhuǎn)中心,把點(diǎn)A(3,4)逆時(shí)針旋轉(zhuǎn)90°,得到點(diǎn)B,則點(diǎn)B的坐標(biāo)為( 。
A. (4,﹣3) B. (﹣4,3) C. (﹣3,4) D. (﹣3,﹣4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道對(duì)于一個(gè)圖形,通過(guò)不同的方法計(jì)算圖形的面積可以得到一個(gè)數(shù)學(xué)等式例如:由圖1可得到
(1)根據(jù)以上數(shù)學(xué)等式,若,,求和值;
(2)寫(xiě)出由圖2所表示的數(shù)學(xué)等式:__________;
(3)利用上述結(jié)論,解決下面問(wèn)題:已知,,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解七年級(jí)學(xué)生體育測(cè)試成績(jī)情況,現(xiàn)從中隨機(jī)抽取部分學(xué)生的體育成績(jī)統(tǒng)計(jì)如下,其中右側(cè)扇形統(tǒng)計(jì)圖中的圓心角α為36°,根據(jù)圖表中提供的信息,回答下列問(wèn)題:
體育成績(jī)統(tǒng)計(jì)表 | ||
體育成績(jī)(分) | 人數(shù)(人) | 百分比(%) |
26 | 8 | 16 |
27 | 12 | 24 |
28 | 15 | |
29 | n | |
30 |
(1)求樣本容量及n的值;
(2)已知該校七年級(jí)共有500名學(xué)生,如果體育成績(jī)達(dá)28分以上為優(yōu)秀,請(qǐng)估計(jì)該校七年級(jí)學(xué)生體育成績(jī)達(dá)到優(yōu)秀的總?cè)藬?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,等腰Rt△ABC中,∠A=90°,點(diǎn)D,E分別在邊AB,AC上,AD=AE,連接DC,點(diǎn)M,P,N分別為DE,DC,BC的中點(diǎn).
(1)觀察猜想:圖1中,線段PM與PN的數(shù)量關(guān)系是 ,位置關(guān)系是 ;
(2)探究證明:把△ADE繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說(shuō)明理由;
(3)拓展延伸:把△ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD=8,AB=20,請(qǐng)直接寫(xiě)出△PMN面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D、E分別是邊AB、AC的中點(diǎn),∠B=50°,∠A=26°,將△ABC沿DE折疊,點(diǎn)A的對(duì)應(yīng)點(diǎn)是點(diǎn)A′,則∠AEA′的度數(shù)是( 。
A. 145° B. 152° C. 158° D. 160°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E在線段BC上,AB⊥BC,DC⊥BC,∠AED=90°,且AE=DE.
(1)求證:△ABE≌△ECD.
(2)直接寫(xiě)出線段AB、BC、CD之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程x2﹣(2k+1)x+k2+1=0.
(1)若方程有兩個(gè)不相等的實(shí)數(shù)根,求k的取值范圍;
(2)若方程的兩根恰好是一個(gè)矩形兩鄰邊的長(zhǎng),且k=2,求該矩形的對(duì)角線L的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O中,AB是⊙O的直徑,G為弦AE的中點(diǎn),連接OG并延長(zhǎng)交⊙O于點(diǎn)D,連接BD交AE于點(diǎn)F,延長(zhǎng)AE至點(diǎn)C,使得FC=BC,連接BC.
(1)求證:BC是⊙O的切線;
(2)⊙O的半徑為5,tanA=,求FD的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com