【題目】把算式-2-3-(+14)寫成加法的形式是( )
A. (-2)+(-3)+(-14)B. (-2)+(-3)-(-14)
C. (-2)+(+3)+(-14)D. (-2)+(+3)+(+14)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解方程(1)2(x﹣3)2=8;(2)4x2﹣6x﹣3=0
(3)(2x﹣3)2=5(2x﹣3);(4)(x+8)(x+1)=﹣12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的與的部分對應(yīng)值如下表:
… | 0 | 1 | 3 | … | ||
… | 1 | 3 | 1 | … |
則下列判斷中正確的是( )
A. 拋物線開口向上 B. 拋物線與軸交于負(fù)半軸
C. 當(dāng)時(shí), D. 方程的正根在3與4之間
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題14分)如圖①,已知拋物線(a≠0)與軸交于點(diǎn)A(1,0)和點(diǎn)B(-3,0),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)設(shè)拋物線的對稱軸與軸交于點(diǎn)M,問在對稱軸上是否存在點(diǎn)P,使△CMP為等腰三角形?若存在,請直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.
(3)如圖②,若點(diǎn)E為第二象限拋物線上一動點(diǎn),連接BE、CE,求四邊形BOCE面積的最大值,并求此時(shí)E點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△BEF都是等邊三角形,點(diǎn)D在BC邊上,點(diǎn)F在AB邊上,且∠EAD=60°,連接ED、CF.
(1)求證:△ABE≌△ACD;
(2)求證:四邊形EFCD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】式子-4-2-1+2的正確讀法是( )
A. 減4減2減1加2B. 負(fù)4減2減1加2
C. -4,-2,-1加2D. 4,2,1,2的和
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)校組織的社會實(shí)踐活動中,甲、乙兩人參加了射擊比賽,每人射擊七次,命中的環(huán)數(shù)如表:
根據(jù)以上信息,解決以下問題:
(1)寫出甲、乙兩人命中環(huán)數(shù)的眾數(shù);
(2)已知通過計(jì)算器求得=8,≈1.43,試比較甲、乙兩人誰的成績更穩(wěn)定?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC的邊BC在直線l上,AC⊥BC,且AC=BC;△EFP的邊FP也在直線l上,邊EF與邊AC重合,且EF=FP.
(1)如圖1,請你寫出AB與AP所滿足的數(shù)量關(guān)系和位置關(guān)系;
(2)將△EFP沿直線l向左平移到圖2的位置時(shí),EP交AC于點(diǎn)O,連接AP,BO.猜想并寫出BO與AP所滿足的數(shù)量關(guān)系和位置關(guān)系,并說明理由;
(3)將△EFP沿直線l繼續(xù)向左平移到圖3的位置時(shí),EP的延長線交AC的延長線于點(diǎn)O,連接AP,BO.此時(shí),BO與AP還具有(2)中的數(shù)量關(guān)系和位置關(guān)系嗎?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com