【題目】隨著阿里巴巴、淘寶網(wǎng)、京東、小米等互聯(lián)網(wǎng)巨頭的崛起,催生了快遞行業(yè)的高速發(fā)展.據(jù)調查,杭州市某家小型快遞公司,今年一月份與三月份完成投遞的快遞總件數(shù)分別為10萬件和12.1萬件.現(xiàn)假定該公司每月投遞的快遞總件數(shù)的增長率相同.
(1)求該快遞公司投遞快遞總件數(shù)的月平均增長率;
(2)如果平均每人每月最多可投遞快遞0.6萬件,那么該公司現(xiàn)有的21名快遞投遞業(yè)務員能否完成今年4月份的快遞投遞任務?如果不能,請問至少需要增加幾名業(yè)務員?
【答案】(1)10%;(2)不能,增加2名.
【解析】試題分析:(1)設該快遞公司投遞快遞總件數(shù)的月平均增長率為x,根據(jù)今年一月份與三月份完成投遞的快遞總件數(shù)分別為10萬件和12.1萬件即可得出關于x的一元二次方程,解之取其正值即可得出結論;
(2)根據(jù)3月份完成投遞的快遞總件數(shù)結合完成投遞的快遞總件數(shù)即可算出今年4月份的快遞投遞總件數(shù),再根據(jù)投遞快遞總件數(shù)=每人投遞件數(shù)×人數(shù)即可算出該公司現(xiàn)有的21名快遞投遞業(yè)務員最多能夠完成的任務量,二者比較后即可得出結論.
試題解析:(1)設該快遞公司投遞快遞總件數(shù)的月平均增長率為x,由題意,得
解得:
答:該快遞公司投遞快遞總件數(shù)的月平均增長率為10%.
(2)4月:12.1×1.1=13.31(萬件)
21×0.6=12.6<13.31,
∴該公司現(xiàn)有的21名快遞投遞業(yè)務員不能完成今年4月份的快遞投遞任務。
∵
∴至少還需增加2名業(yè)務員.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,延長AD到E,使DE=AD,連接EB,EC,DB,下列條件中,不能使四邊形DBCE成為菱形的是( )
A.AB=BEB.BE⊥DCC.∠ABE=90°D.BE平分∠DBC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,點A在第一象限,點A,B關于y軸對稱.
(1)若A(1,3),寫出點B的坐標;
(2)若A(a,b),且△AOB的面積為a2,求點B的坐標(用含a的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠ABC<20°,三邊長分別為a,b,c,將△ABC沿直線BA翻折,得到△ABC1;然后將△ABC1沿直線BC1翻折,得到△A1BC1;再將△A1BC1沿直線A1B翻折,得到△A1BC2;…,若翻折4次后,得到圖形A2BCAC1A1C2的周長為a+c+5b,則翻折11次后,所得圖形的周長為_____________.(結果用含有a,b,c的式子表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:只有一組對角是直角的四邊形叫做損矩形,連結它的兩個非直角頂點的線段叫做這個損矩形的直徑.
(1)識圖:如圖(1),損矩形ABCD,∠ABC=∠ADC=90°,則該損矩形的直徑線段為 .
(2)探究:在上述損矩形ABCD內,是否存在點O,使得A、B、C、D四個點都在以O為圓心的同一圓上?如果有,請指出點O的具體位置;若不存在,請說明理由.
(3)實踐:已知如圖三條線段a、b、c,求作相鄰三邊長順次為a、b、c的損矩形ABCD(尺規(guī)作圖,保留作圖痕跡).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了了解某種電動汽車的性能,某機構對這種電動汽車進行抽檢,獲得如圖中不完整的統(tǒng)計圖,其中,,,表示 一次充電后行駛的里程數(shù)分別為,,,.
(1)問這次被抽檢的電動汽車共有幾輛?并補全條形統(tǒng)計圖;
電動汽車一次充電后行駛里程數(shù)的條形統(tǒng)計圖
電動汽車一次充電后行駛里程數(shù)的扇形統(tǒng)計圖
(2)求扇形統(tǒng)計圖中表示一次充電后行駛路為的扇形圓心角的度數(shù);
(3)估計這種電動汽車一次充電后行駛的平均里程多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形是矩形紙片且,對折矩形紙片,使與重合,折痕為,展平后再過點折疊矩形紙片,使點落在上的點處,折痕與相交于點,再次展開,連接,.
(1)連接,求證:是等邊三角形;
(2)求,的長;
(3)如圖,連接將沿折疊,使點落在點處,延長交邊于點,已知,求的長?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AB=10,BC=8,P、Q分別是AB、BC邊上的點,且AP=BQ=a (其中0<a<8).
(1)若PQ⊥BC,求a的值;
(2)若PQ=BQ,把線段CQ繞著點Q旋轉180°,試判別點C的對應點C’是否落在線段QB上?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD為矩形,△ACE為AC為底的等腰直角三角形,連接BE交AD、AC分別于F. N,CM平分∠ACB交BN于M,下列結論:(1)BE⊥ED;(2)AB=AF;(3)EM=EA;(4)AM平分∠BAC,其中正確的結論有( )
A. 1個B. 2個
C. 3個D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com