已知:如圖,正方形ABCD中,點E是BA延長線上一點,連接DE,點F在DE上且DF=DC,DG⊥CF于G. DH平分∠ADE交CF于點H,連接BH.
(1)若DG=2,求DH的長;
(2)求證:BH+DH=CH.
(1) (2)證明DM=BH,DM+DH=CH所以BH+DH=CH
【解析】
試題分析:(1)∵DG⊥CF且DF=CD
∴∠FDG=∠FDC
∵DH平分∠ADE
∴∠FDH=∠ADF 2分
∴∠HDG=∠FDG-∠FDH=∠FDC-∠ADF
=(∠FDC-∠ADF)=∠ADC=45°
∴△DGH為等腰直角三角形
∵DG=2,
∴DH= .
(2)過點C作CM⊥CH, 交HD延長線于點M
∵∠1+∠DCH=∠2+∠DCH=900
∴∠1=∠2
又△DGH為等腰直角三角形
∴△MCH為等腰直角三角形
∴MC=HC
又∵四邊形ABCD為正方形
∴CD=CB
∴△MCD≌△HCB
∴DM=BH
又∵△MCH為等腰直角三角形
∴DM+DH=CH
∴BH+DH=CH
考點:角平分線,全等三角形
點評:本題考查角平分線,全等三角形,解本題的關(guān)鍵是掌握角平分線的性質(zhì),熟悉全等三角形的判定方法,會證明三角形全等
科目:初中數(shù)學 來源: 題型:
2 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
32 |
x |
OG+GF |
DF |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
13 | 48 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com