(2006,長沙)如圖1,已知直線與拋物線交于A、B兩點.

(1)求A、B兩點的坐標(biāo);

(2)求線段A、B的垂直平分線的解析式;

(3)如圖2,取與線段AB等長的一根橡皮筋,端點分別固定在A、B兩處.用鉛筆拉著這根橡皮筋使筆尖P在直線AB上方的拋物線上移動,動點P將與A、B構(gòu)成無數(shù)個三角形,這些三角形中是否存在一個面積最大的三角形?如果存在,求出最大面積,并指出此時P點的坐標(biāo);如果不存在,請簡要說明理由.

答案:略
解析:

(1)解:依題意得

解之得  

A(6,-3)B(4,2);

(2)AB的垂直平分線交x軸,y軸于C、D兩點,交ABM(如圖1)

(1)可知,

,

BBEx軸,E為垂足.

BEOOCM,得,,

同理,、

設(shè)CD的解析式為y=kxb(k≠0),

  

AB的垂直平分線的解析式為;

 

(3)若存在點P使APB的面積最大,則點P在與直線AB平行且和拋物線只有一個交點的直線上,并設(shè)該直線與x軸,y軸交于G、H兩點(如圖2)

拋物線與直線只有一個交點,

,

,

直線GH的解析式為

,,

設(shè)OGH的距離為d

,

ABGH,

PAB的距離等于OGH的距離d


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年北京市中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2006•長沙)如圖1,已知直線y=-x與拋物線y=-x2+6交于A,B兩點.
(1)求A,B兩點的坐標(biāo);
(2)求線段AB的垂直平分線的解析式;
(3)如圖2,取與線段AB等長的一根橡皮筋,端點分別固定在A,B兩處.用鉛筆拉著這根橡皮筋使筆尖P在直線AB上方的拋物線上移動,動點P將與A,B構(gòu)成無數(shù)個三角形,這些三角形中是否存在一個面積最大的三角形?如果存在,求出最大面積,并指出此時P點的坐標(biāo);如果不存在,請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(10)(解析版) 題型:解答題

(2006•長沙)如圖1,已知直線y=-x與拋物線y=-x2+6交于A,B兩點.
(1)求A,B兩點的坐標(biāo);
(2)求線段AB的垂直平分線的解析式;
(3)如圖2,取與線段AB等長的一根橡皮筋,端點分別固定在A,B兩處.用鉛筆拉著這根橡皮筋使筆尖P在直線AB上方的拋物線上移動,動點P將與A,B構(gòu)成無數(shù)個三角形,這些三角形中是否存在一個面積最大的三角形?如果存在,求出最大面積,并指出此時P點的坐標(biāo);如果不存在,請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年湖南省長沙市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•長沙)如圖1,已知直線y=-x與拋物線y=-x2+6交于A,B兩點.
(1)求A,B兩點的坐標(biāo);
(2)求線段AB的垂直平分線的解析式;
(3)如圖2,取與線段AB等長的一根橡皮筋,端點分別固定在A,B兩處.用鉛筆拉著這根橡皮筋使筆尖P在直線AB上方的拋物線上移動,動點P將與A,B構(gòu)成無數(shù)個三角形,這些三角形中是否存在一個面積最大的三角形?如果存在,求出最大面積,并指出此時P點的坐標(biāo);如果不存在,請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年天津市河西區(qū)九年級結(jié)課質(zhì)量調(diào)查數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•長沙)如圖,A,B,D,E四點在⊙O上,AE,BD的延長線相交于點C,直徑AE為8,OC=12,∠EDC=∠BAO.
(1)求證:
(2)計算CD•CB的值,并指出CB的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年湖南省長沙市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•長沙)如圖,已知∠AOB和射線O′B′,用尺規(guī)作圖法作∠A′O′B′=∠AOB(要求保留作圖痕跡).

查看答案和解析>>

同步練習(xí)冊答案