【題目】如圖,在中, , 、是腰、上的高,交于點(diǎn).
()求證: .
()若,求的度數(shù).
【答案】(1)見解析;(2)
【解析】試題分析:(1)首先根據(jù)等腰三角形的性質(zhì)得到∠ABC=∠ACB,然后證明△BEC≌△CDB,得到∠ECB=∠DBC,從而得證;
(2)首先求出∠A的度數(shù),得到∠ACE的度數(shù),進(jìn)而求出∠COD的度數(shù).
試題解析:解:(1)∵AB=AC,∴∠ABC=∠ACB.
∵BD、CE是△ABC的兩條高線,∴∠BEC=∠BDC=90°.
在△BEC和△CDB中,∵∠BEC=∠CDB,∠EBC=∠DCB,BC=CB,∴△BEC≌△CDB,
∴∠DBC=∠ECB,∴OB=OC.
(2)∵∠ABC=65°,AB=AC,∴∠A=180°-2×65°=50°,∴∠ACE=90°-∠A=40°,∴∠COD=90°-∠ACE=90°-40°=50°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解答題
(1)問題發(fā)現(xiàn)
如圖1,△ABC和△ADE均為等邊三角形,點(diǎn)D在邊BC上,連接CE.請(qǐng)?zhí)羁眨?/span>
①∠ACE的度數(shù)為;
②線段AC、CD、CE之間的數(shù)量關(guān)系為 .
(2)拓展探究
如圖2,△ABC和△ADE均為等腰直角三角形,∠BAC=∠DAE=90°,點(diǎn)D在邊BC上,連接CE.請(qǐng)判斷∠ACE的度數(shù)及線段AC、CD、CE之間的數(shù)量關(guān)系,并說明理由.
(3)解決問題
如圖3,在四邊形ABCD中,∠BAD=∠BCD=90°,AB=AD=2,CD=1,AC與BD交于點(diǎn)E,請(qǐng)直接寫出線段AC的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△OAB的頂點(diǎn)A在x軸的正半軸上,頂點(diǎn)B的坐標(biāo)為(3, ),點(diǎn)C的坐標(biāo)為(,0),點(diǎn)P為斜邊OB上的一個(gè)動(dòng)點(diǎn),則PA+PC的最小值為( )
A. B. C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一塊長(zhǎng)方體木塊的各棱長(zhǎng)如圖所示,一只蜘蛛在木塊的一個(gè)頂點(diǎn)A處,一只蒼蠅在這個(gè)長(zhǎng)方體上和蜘蛛相對(duì)的頂點(diǎn)B處,蜘蛛急于捉住蒼蠅,沿著長(zhǎng)方體的表面向上爬.
(1)如果D是棱的中點(diǎn),蜘蛛沿“AD→DB”路線爬行,它從A點(diǎn)爬到B點(diǎn)所走的路程為多少?
(2)你認(rèn)為“AD→DB”是最短路線嗎?如果你認(rèn)為不是,請(qǐng)計(jì)算出最短的路程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)動(dòng)銷售人員的積極性,A、B兩公司采取如下工資支付方式:A公司每月2000元基本工資,另加銷售額的2%作為獎(jiǎng)金;B公司每月1600元基本工資,另加銷售額的4%作為獎(jiǎng)金。已知A、B公司兩位銷售員小李、小張1~6月份的銷售額如下表:
(1)請(qǐng)問小李與小張3月份的工資各是多少?
(2)小李1~6月份的銷售額與月份的函數(shù)關(guān)系式是小張1~6月份的銷售額也是月份的一次函數(shù),請(qǐng)求出與的函數(shù)關(guān)系式;
(3)如果7~12月份兩人的銷售額也分別滿足(2)中兩個(gè)一次函數(shù)的關(guān)系,問幾月份起小張的工資高于小李的工資。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是一段只有3米長(zhǎng)的窄道路,由于一輛小汽車與一輛大卡車在AB段相遇,必須倒車才能繼續(xù)通過.如果小汽車在AB段正常行駛需10分鐘,大卡車在AB段正常行駛需20分鐘,小汽車在AB段倒車的速度是它正常行駛速度的,大卡車在AB段倒車的速度是它正常行駛的,小汽車需倒車的路程是大卡車的4倍.問兩車都通過AB這段狹窄路面的最短時(shí)間是 分鐘.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:關(guān)于x的方程kx2﹣(3k﹣1)x+2(k﹣1)=0
(1)求證:無論k為任何實(shí)數(shù),方程總有實(shí)數(shù)根;
(2)若此方程有兩個(gè)實(shí)數(shù)根x1 , x2 , 且|x1﹣x2|=2,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】特值驗(yàn)證:
當(dāng),0,1,2,5,…時(shí),計(jì)算代數(shù)式的值,分別得到5,2,1,2,17,….當(dāng)x的取值發(fā)生變化時(shí),代數(shù)式的值卻有一個(gè)確定的范圍,通過多次驗(yàn)證可以發(fā)現(xiàn)它的值總大于或等于1,所以1就是它的最小值.
變式求證:
我們可以用學(xué)過的知識(shí),對(duì)進(jìn)行恒等變形:.(注:這種變形方法可稱為“配方”) ,.所以無論x取何值,代數(shù)式的值不小于1,即最小值為1.
遷移實(shí)證:
(1)請(qǐng)你用“配方”的方法,確定的最小值為3;
(2)求的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com