直角梯形ABCD中,AD∥BC,AB=AD=3,邊BC, AB分別在x軸和y軸上,已知點C的坐標分別為(4,0)。動點P從B點出發(fā),以每秒1個單位的速度沿BC方向作勻速直線運動,同時點Q從D點出發(fā),以與P點相同的速度沿DA方向運動,當Q點運動到A點時, P,Q兩點同時停止運動。設(shè)點P運動時間為t,
(1)求線段CD的長。
(2) 連接PQ交直線AC于點E,當AE : EC="1" : 2時,求t的值,并求出此時△PEC的面積。
(3) 過Q點作垂直于AD的射線交AC于點M,交BC于點N,連接PM,
①是否存在某一時刻,使以M、P、C三點為頂點的三角形是等腰三角形?若存在 ,求出此時t的值;若不存在,請說明理由;
②當t=         時,點P、M、D在同一直線上。(直接寫出)

備用圖

 
 

(1)CD= 
(2) ∵AD∥BC   ∴△AQE∽△CPE
  即 解得t=2
∴PC=BC-BP=4-2=2
∴S△PEC=PC× AB=×2×2="2"

y

 
  (3) ① 存在, 易求 MC= (t+1) ,PC=4-t

       若PC="MC" , 則 (t+1) =4-t 解得t=
若MP="MC," 則PN="CN" ,∴3-2t=1+t 解得t=
若 MP="PC," 如圖, 作PF⊥AC于點F

則CF:CP=CO:CA= 
= 解得t=   
②  t=1。

解析

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)在直角梯形ABCD中,底AD=6cm,BC=11cm,腰CD=12cm,則這個直角梯形的周長為
 
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,直角梯形ABCD中,AD∥BC,∠B=90°,AD=1,BC=8,AB=6,點P在高AB上滑動,當AP長為
 
時,△DAP與△PBC相似.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,直角梯形ABCD中,AD∥BC,∠A=∠B=90°,E是AB的中點,連接DE、CE,AD+BC=CD,以精英家教網(wǎng)下結(jié)論:
(1)∠CED=90°;
(2)DE平分∠ADC;
(3)以AB為直徑的圓與CD相切;
(4)以CD為直徑的圓與AB相切;
(5)△CDE的面積等于梯形ABCD面積的一半.
其中正確結(jié)論的個數(shù)為( 。
A、2個B、3個C、4個D、5個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=2DC,對角線AC⊥BD,垂足為F,過點F作精英家教網(wǎng)EF∥AB,交AD于點E,CF=4cm.
(1)求證:四邊形ABFE是等腰梯形;
(2)求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

7、在直角梯形ABCD中,底AD=6,BC=11,腰CD=13,則周長=
42

查看答案和解析>>

同步練習冊答案