【題目】(1)如圖,在△ABC中,∠B=40°,∠C=80°,AD⊥BC于D,且AE平分∠BAC,求∠EAD的度數(shù).
(2)上題中若∠B=40°,∠C=80°改為∠C>∠B,其他條件不變,請你求出∠EAD與∠B、∠C之間的數(shù)列關(guān)系?并說明理由.
【答案】(1)20°;(2)∠EAD=∠C﹣∠B.理由見解析.
【解析】
(1)根據(jù)三角形內(nèi)角和定理求出∠BAC,求出∠CAE,根據(jù)三角形內(nèi)角和定理求出∠CAD,代入∠EAD=∠CAE-∠CAD求出即可;
(2)根據(jù)三角形內(nèi)角和定理求出∠BAC,求出∠CAE,根據(jù)三角形內(nèi)角和定理求出∠CAD,代入∠EAD=∠CAE-∠CAD求出即可.
(1)∵∠B=40°,∠C=80°,
∴∠BAC=180°-∠B-∠C=60°,
∵AE平分∠BAC,
∴∠CAE=∠BAC=30°,
∵AD⊥BC,
∴∠ADC=90°,
∵∠C=80°,
∴∠CAD=90°-∠C=10°,
∴∠EAD=∠CAE-∠CAD=30°-10°=20°;
(2)∵三角形的內(nèi)角和等于180°,
∴∠BAC=180°-∠B-∠C,
∵AE平分∠BAC,
∴∠CAE=∠BAC=(180°-∠B-∠C),
∵AD⊥BC,
∴∠ADC=90°,
∴∠CAD=90°-∠C,
∴∠EAD=∠CAE-∠CAD=(180°-∠B-∠C)-(90°-∠C)=∠C-∠B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課題學(xué)習(xí):設(shè)計概率模擬實驗. 在學(xué)習(xí)概率時,老師說:“擲一枚質(zhì)地均勻的硬幣,大量重復(fù)實驗后,正面朝上的概率約是 .”小海、小東、小英分別設(shè)計了下列三個模擬實驗:
小海找來一個啤酒瓶蓋(如圖1)進行大量重復(fù)拋擲,然后計算瓶蓋口朝上的次數(shù)與總次數(shù)的比值;
小東用硬紙片做了一個圓形轉(zhuǎn)盤,轉(zhuǎn)盤上分成8個大小一樣的扇形區(qū)域,并依次標上1至8個數(shù)字(如圖2),轉(zhuǎn)動轉(zhuǎn)盤10次,然后計算指針落在奇數(shù)區(qū)域的次數(shù)與總次數(shù)的比值;
小英在一個不透明的盒子里放了四枚除顏色外都相同的圍棋子(如圖3),其中有三枚是白子,一枚是黑子,從中隨機同時摸出兩枚棋子,并大量重復(fù)上述實驗,然后計算摸出的兩枚棋子顏色不同的次數(shù)與總次數(shù)的比值.
根據(jù)以上材料回答問題:
小海、小東、小英三人中,哪一位同學(xué)的實驗設(shè)計比較合理,并簡要說出其他兩位同學(xué)實驗的不足之處.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形中,=4cm,=3cm,為的中點.動點從點出發(fā),以每秒1cm的速度沿運動,最終到達點.若點運動的時間為秒,則當=________ 時,的面積等于4.5.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)平面內(nèi)一點到等邊三角形中心的距離為d,等邊三角形的內(nèi)切圓半徑為r,外接圓半徑為R.對于一個點與等邊三角形,給出如下定義:滿足r≤d≤R的點叫做等邊三角形的中心關(guān)聯(lián)點. 在平面直角坐標系xOy中,等邊△ABC的三個頂點的坐標分別為A(0,2),B(﹣ ,﹣1),C( ,﹣1).
(1)已知點D(2,2),E( ,1),F(xiàn)(﹣ ,﹣1).在D,E,F(xiàn)中,是等邊△ABC的中心關(guān)聯(lián)點的是;
(2)如圖1,過點A作直線交x軸正半軸于M,使∠AMO=30°. ①若線段AM上存在等邊△ABC的中心關(guān)聯(lián)點P(m,n),求m的取值范圍;
②將直線AM向下平移得到直線y=kx+b,當b滿足什么條件時,直線y=kx+b上總存在等邊△ABC的中心關(guān)聯(lián)點;(直接寫出答案,不需過程)
(3)如圖2,點Q為直線y=﹣1上一動點,⊙Q的半徑為 .當Q從點(﹣4,﹣1)出發(fā),以每秒1個單位的速度向右移動,運動時間為t秒.是否存在某一時刻t,使得⊙Q上所有點都是等邊△ABC的中心關(guān)聯(lián)點?如果存在,請直接寫出所有符合題意的t的值;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標系中,一次函數(shù)的圖象與軸交于點.
(1)若點關(guān)于軸的對稱點在一次函數(shù)的圖象上,求的值;
(2)求由直線,(1)中的直線以及軸圍成的三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的頂點A、C分別在x、y軸的正半軸上,點D為對角線OB的中點,點E(4,m)在邊AB上,反比例函數(shù)y= (k≠0)在第一象限內(nèi)的圖象經(jīng)過點D、E,且cos∠BOA= .
(1)求邊AB的長;
(2)求反比例函數(shù)的解析式和m的值;
(3)若反比例函數(shù)的圖象與矩形的邊BC交于點F,點G、H分別是y軸、x軸上的點,當△OGH≌△FGH時,求線段OG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊△ABC中,
(1)如圖1,P,Q是BC邊上兩點,AP=AQ,∠BAP=20°,求∠AQB的度數(shù);
(2)點P,Q是BC邊上的兩個動點(不與點B,C重合),點P在點Q的左側(cè),且AP=AQ,點Q關(guān)于直線AC的對稱點為M,連接AM,PM.
①依題意將圖2補全;②小明通過觀察、實驗,提出猜想:在點P,Q運動的過程中,始終有PA=PM,小明把這個猜想與同學(xué)們進行交流,通過討論,形成了證明該猜想的幾種想法:
想法1:要證PA=PM,只需證△APM是等邊三角形.
想法2:在BA上取一點N,使得BN=BP,要證PA=PM,只需證△ANP≌△PCM.……
請你參考上面的想法,幫助小明證明PA=PM(一種方法即可).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com