如圖,頂點(diǎn)坐標(biāo)為(2,-1)的拋物線y=ax2+bx+c(a≠0)與y軸交于點(diǎn)C(0,3),與x軸交于A、B兩點(diǎn).
(1)求拋物線的表達(dá)式;
(2)設(shè)拋物線的對稱軸與直線BC交于點(diǎn)D,連接AC、AD,求△ACD的面積;
(3)點(diǎn)E為直線BC上一動點(diǎn),過點(diǎn)E作y軸的平行線EF,與拋物線交于點(diǎn)F.問是否存在點(diǎn)E,使得以D、E、F為頂點(diǎn)的三角形與△BCO相似?若存在,求點(diǎn)E的坐標(biāo);若不存在,請說明理由.
(1)依題意,設(shè)拋物線的解析式為 y=a(x-2)2-1,代入C(O,3)后,得:
a(0-2)2-1=3,a=1
∴拋物線的解析式:y=(x-2)2-1=x2-4x+3.

(2)由(1)知,A(1,0)、B(3,0);
設(shè)直線BC的解析式為:y=kx+3,代入點(diǎn)B的坐標(biāo)后,得:
3k+3=0,k=-1
∴直線BC:y=-x+3;
由(1)知:拋物線的對稱軸:x=2,則 D(2,1);
∴AD=
AG2+DG2
=
2
,AC=
OC2+OA2
=
10
,CD=
(3-1)2+22
=2
2

即:AC2=AD2+CD2,△ACD是直角三角形,且AD⊥CD;
∴S△ACD=
1
2
AD•CD=
1
2
×
2
×2
2
=2.

(3)由題意知:EFy軸,則∠FED=∠OCB,若△OCB與△FED相似,則有:
①∠DFE=90°,即 DFx軸;
將點(diǎn)D縱坐標(biāo)代入拋物線的解析式中,得:
x2-4x+3=1,解得 x=2±
2

當(dāng)x=2+
2
時,y=-x+3=1-
2
;
當(dāng)x=2-
2
時,y=-x+3=1+
2
;
∴E1(2+
2
,1-
2
)、E2(2-
2
,1+
2
).
②∠EDF=90°;
易知,直線AD:y=x-1,聯(lián)立拋物線的解析式有:
x2-4x+3=x-1,
x2-5x+4=0,
解得 x1=1、x2=4;
當(dāng)x=1時,y=-x+3=2;
當(dāng)x=4時,y=-x+3=-1;
∴E3(1,2)、E4(4,-1).
綜上,存在符合條件的點(diǎn)E,且坐標(biāo)為:(2+
2
,1-
2
)、(2-
2
,1+
2
)、(1,2)或(4,-1).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線與x軸交于點(diǎn)A(3,0),B(8,0),與y軸交于點(diǎn)C,且AC平分∠OCB,直線l是它的對稱軸.
(1)求直線l和拋物線的解析式;
(2)直線BC與l相交于點(diǎn)D,沿直線l平移直線BC,與直線l,y軸分別交于點(diǎn)E,F(xiàn),探究四邊形CDEF為菱形時點(diǎn)E的坐標(biāo);
(3)線段CB上有一動點(diǎn)P,從C點(diǎn)開始以每秒一個單位的速度向B點(diǎn)運(yùn)動,PM⊥BC,交線段CA于點(diǎn)M,記點(diǎn)P運(yùn)動時間為t,△CPO與△CPM的面積之差為y,求y與t(0<t≤6)之間的關(guān)系式,并確定在運(yùn)動過程中y的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點(diǎn),與y軸相交于點(diǎn)C.連接AC,BC,A(-3,0),C(0,
3
),且當(dāng)x=-4和x=2時二次函數(shù)的函數(shù)值y相等.
(1)求拋物線的解析式;
(2)若點(diǎn)M、N同時從B點(diǎn)出發(fā),均以每秒1個單位長度的速度分別沿BA、BC邊運(yùn)動,其中一個點(diǎn)到達(dá)終點(diǎn)時,另一點(diǎn)也隨之停止運(yùn)動.
①當(dāng)運(yùn)動時間為t秒時,連接MN,將△BMN沿MN翻折,B點(diǎn)恰好落在AC邊上的P處,求t的值及點(diǎn)P的坐標(biāo);
②拋物線的對稱軸上是否存在點(diǎn)Q,使得以B、N、Q為頂點(diǎn)的三角形與△A0C相似?如果存在,請直接寫出點(diǎn)Q的坐標(biāo);如果不存在,請說明理由.
③當(dāng)運(yùn)動時間為t秒時,連接MN,將△BMN沿MN翻折,得到△PMN.并記△PMN與△AOC的重疊部分的面積為S.求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=ax2+bx+c的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C(0,3),過點(diǎn)C作x軸的平行線與拋物線交于點(diǎn)D,拋物線的頂點(diǎn)為M,直線y=x+5經(jīng)過D、M兩點(diǎn).
(1)求此拋物線的解析式;
(2)連接AM、AC、BC,試比較∠MAB和∠ACB的大小,并說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖(1)己知拋物線y=ax2+bx+c與x軸交于點(diǎn)A(-1,0)和點(diǎn)B(3,0),與y軸正半軸交于點(diǎn)C,且
cos∠CAB=
10
10

(1)求拋物線的解析式;
(2)如圖(2),己知點(diǎn)H(0,1).問在拋物線上是否存在點(diǎn)G,使得S△GHC=S△GHA?若存在,求出點(diǎn)G的坐標(biāo);若不存在,請說明理由;
(3)如圖(3),拋物線上點(diǎn)D在x軸上的正投影為點(diǎn)E(2,0),F(xiàn)是OC的中點(diǎn),連接DF,P為線段BD上的一點(diǎn),若∠EPF=∠BDF,求線段PE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線與x交于A(-1,0)、E(3,0)兩點(diǎn),與y軸交于點(diǎn)B(0,3).
(1)求拋物線的解析式;
(2)設(shè)拋物線頂點(diǎn)為D,△AOB與△DBE是否相似?如果相似,請給以證明;如果不相似,請說明理由.
(3)若點(diǎn)P為第一象限拋物線上一動點(diǎn),連接BP、PE,求四邊形ABPE面積的最大值,并求此時P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,Rt△AOB中,∠A=90°,以O(shè)為坐標(biāo)原點(diǎn)建立直角坐標(biāo)系,使點(diǎn)A在x軸正半軸上,OA=2,AB=8,點(diǎn)C為AB邊的中點(diǎn),拋物線的頂點(diǎn)是原點(diǎn)O,且經(jīng)過C點(diǎn).
(1)填空:直線OC的解析式為______;拋物線的解析式為______;
(2)現(xiàn)將該拋物線沿著線段OC移動,使其頂點(diǎn)M始終在線段OC上(包括端點(diǎn)O、C),拋物線與y軸的交點(diǎn)為D,與AB邊的交點(diǎn)為E;
①是否存在這樣的點(diǎn)D,使四邊形BDOC為平行四邊形?如存在,求出此時拋物線的解析式;如不存在,說明理由;
②設(shè)△BOE的面積為S,求S的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,二次函數(shù)y=-mx2+4m的頂點(diǎn)坐標(biāo)為(0,2),矩形ABCD的頂點(diǎn)B、C在x軸上,A、D在拋物線上,矩形ABCD在拋物線與x軸所圍成的圖形內(nèi).
(1)求二次函數(shù)的解析式;
(2)設(shè)點(diǎn)A的坐標(biāo)為(x,y),試求矩形ABCD的周長P關(guān)于自變量x的函數(shù)解析式,并求出自變量x的取值范圍;
(3)是否存在這樣的矩形ABCD,使它的周長為9?試證明你的結(jié)論.
(4)求出當(dāng)x為何值時P有最大值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,中國首個空間實(shí)驗(yàn)室“天宮一號”于2011年9月29日成功發(fā)射.某科技實(shí)驗(yàn)小組也自行設(shè)計(jì)了火箭,經(jīng)測試,該種火箭被豎直向上發(fā)射時,它的高度h(m)與時間t(s)的關(guān)系可以用公式h=-t2+10t-15表示,經(jīng)過______s,火箭達(dá)到它的最高點(diǎn)10米處.

查看答案和解析>>

同步練習(xí)冊答案