(2009•撫順)將一個含30°角的三角板和一個含45°角的三角板如圖擺放,∠ACB與∠DCE完全重合,∠C=90°,∠A=45°,∠EDC=60°,AB=4,DE=6,則EB=   
【答案】分析:根據(jù)直角三角形的性質(zhì),求得BC,再求得EC,由此可以求出CE,再利用BE=CE-BC即可求出EB.
解答:解:在Rt△ABC中,
∵AB=4,∠A=45°,
∴BC=4×=4
在Rt△EDC中,
∵∠EDC=60°,DE=6,
∴CE=DE•sin∠EDC=6×=3
∴BE=CE-BC=3-4.
故填空答案:3-4.
點評:本題利用了直角三角形的性質(zhì)和等腰三角形的性質(zhì)求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年中考數(shù)學(xué)總復(fù)習(xí)專題:解直角三角形(解析版) 題型:填空題

(2009•撫順)將一個含30°角的三角板和一個含45°角的三角板如圖擺放,∠ACB與∠DCE完全重合,∠C=90°,∠A=45°,∠EDC=60°,AB=4,DE=6,則EB=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《四邊形》(11)(解析版) 題型:解答題

(2009•撫順)如圖所示,已知:Rt△ABC中,∠ACB=90°.
(1)尺規(guī)作圖:作∠BAC的平分線AM交BC于點D(只保留作圖痕跡,不寫作法);
(2)在(1)所作圖形中,將Rt△ABC沿某條直線折疊,使點A與點D重合,折痕EF交AC于點E,交AB于點F,連接DE、DF,再展回到原圖形,得到四邊形AEDF.
①試判斷四邊形AEDF的形狀,并證明;
②若AC=8,CD=4,求四邊形AEDF的周長和BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《三角形》(07)(解析版) 題型:填空題

(2009•撫順)將一個含30°角的三角板和一個含45°角的三角板如圖擺放,∠ACB與∠DCE完全重合,∠C=90°,∠A=45°,∠EDC=60°,AB=4,DE=6,則EB=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年上交教研室數(shù)學(xué)試卷(解析版) 題型:填空題

(2009•撫順)將一個含30°角的三角板和一個含45°角的三角板如圖擺放,∠ACB與∠DCE完全重合,∠C=90°,∠A=45°,∠EDC=60°,AB=4,DE=6,則EB=   

查看答案和解析>>

同步練習(xí)冊答案