【題目】在圖的方格紙中,△OAB 的頂點(diǎn)坐標(biāo)分別為 O(0,0)、A(﹣2,﹣1)、B(﹣1,﹣3),△O1A1B1 △OAB 是以點(diǎn) P 為位似中心的位似圖形

(1)在圖中標(biāo)出位似中心 P 的位置,并寫出點(diǎn) P 及點(diǎn) B 的對(duì)應(yīng)點(diǎn) B1 的坐標(biāo);

(2)以原點(diǎn) O 為位似中心,畫出△OAB 的位似圖形△OA2B2,使它與△OAB 都在位似中心的同側(cè)且它與△OAB 的位似比為 2:1,并寫出點(diǎn) B 的對(duì)應(yīng)點(diǎn) B2 的坐標(biāo);

(3)△OAB 內(nèi)部一點(diǎn)M 的坐標(biāo)為(a,b),寫出 M △OA2B2 中的對(duì)應(yīng)點(diǎn) M2的坐標(biāo);

(4)判斷△OA2B2 能否看作是由△O1A1B1 經(jīng)過某種變換得到的圖形.若能,請(qǐng)指出是怎樣變換得到的(直接寫答案).

【答案】

1 點(diǎn)P位置如圖1,P(-5,-1) ,B1(3,-5) ; ………………………3分)

2 如圖1,B2(-2,-6); ……………………………7分)

3 M2(2a,2b); ……………………………10分)

4 平移. ……………………………12分)

【解析】

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形ABCD⊙O的內(nèi)接四邊形,AC⊙O的直徑,DE⊥AB,垂足為E.

(1)延長(zhǎng)DE⊙O于點(diǎn)F,延長(zhǎng)DC,F(xiàn)B交于點(diǎn)P,如圖1.求證:PC=PB;

(2)過點(diǎn)BBG⊥AD,垂足為G,BGDE于點(diǎn)H,且點(diǎn)O和點(diǎn)A都在DE的左側(cè),如圖2.若AB= ,DH=1,∠OHD=80°,求∠BDE的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BD是矩形ABCD的一條對(duì)角線.

(1)BD的垂直平分線EF,分別交AD,BC于點(diǎn)EF,垂足為點(diǎn)O(要求用尺規(guī)作圖,保留作圖痕跡,不要求寫作法)

(2)(1)中,連接BEDF,求證:四邊形DEBF是菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y1=﹣x+4,y2=x+b都與雙曲線y=交于點(diǎn)A(1,m),這兩條直線分別與x軸交于B,C兩點(diǎn).

(1)求yx之間的函數(shù)關(guān)系式;

(2)直接寫出當(dāng)x>0時(shí),不等式x+b的解集;

(3)若點(diǎn)Px軸上,連接APABC的面積分成1:3兩部分,求此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,ABx軸,∠ABC=135°,且AB=4.

(1)填空:拋物線的頂點(diǎn)坐標(biāo)為 (用含m的代數(shù)式表示);

(2)求ABC的面積(用含a的代數(shù)式表示);

(3)若ABC的面積為2,當(dāng)2m﹣5≤x≤2m﹣2時(shí),y的最大值為2,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形 ABCD 中,對(duì)角線 AC、BD 相交于點(diǎn) O,過點(diǎn) O 的兩條直線分別交邊 AB、CD、AD、BC 于點(diǎn) E、F、G、H.

(感知)如圖,若四邊形 ABCD 是正方形,且 AG=BE=CH=DF,則 S 四邊形AEOG S 正方形 ABCD;

(拓展如圖②,若四邊形 ABCD 是矩形, S 四邊形 AEOGS 矩形 ABCD設(shè) AB=a, AD=b,BE=m, AG 的長(zhǎng)用含 a、b、m 的代數(shù)式表示);

(探究)如圖,若四邊形 ABCD 是平行四邊形,且 AB=3,AD=5,BE=1, 試確定 F、G、H 的位置,使直線 EF、GH 把四邊形 ABCD 的面積四等分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊ABC中,邊長(zhǎng)為6,DBC邊上的動(dòng)點(diǎn),∠EDF=60°

1)求證:BDE∽△CFD;

2)當(dāng)BD=1,CF=3時(shí),求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,AB=13,AC=8,cosBAC=,BDAC,垂足為點(diǎn)D,EBD的中點(diǎn),聯(lián)結(jié)AE并延長(zhǎng),交邊BC于點(diǎn)F.

(1)求∠EAD的余切值;

(2)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖所示,菱形ABCD中,E,F(xiàn)分別是CB,CD上的點(diǎn),且BE=DF.

(1)試說明:AE=AF;

(2)若∠B=60°,點(diǎn)E,F(xiàn)分別為BC和CD的中點(diǎn),試說明:△AEF為等邊三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案