【題目】△ABC為等邊三角形,O為BC的中點(diǎn),D、E分別在邊AB、AC上.如圖1.
(1)若∠DOE=120°,求證:OD=OE;
(2)如圖2,BD=4,CE=2,M是DE的中點(diǎn),求OM的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2)MO.
【解析】
(1)根據(jù)題意以O為圓心,OD長(zhǎng)為半徑畫(huà)弧,交AB于點(diǎn)H,連接OH,則OH=OD,根據(jù)△ABC為等邊三角形,∠DOE=120°,可知∠OEC=∠ADO,則可證出△BHO≌△CEO,可得OH=OE,即OD=OE;
(2)由題意連接BE,取BE的中點(diǎn)G,連接MG并延長(zhǎng)交BC于點(diǎn)H,連接GO,過(guò)點(diǎn)O作OJ垂直MH,M為DE中點(diǎn),G為BE中點(diǎn),則MG∥DB,MG=DB,∠MHO=∠ABC=60°,點(diǎn)O為BC的中點(diǎn),點(diǎn)G為BE的中點(diǎn),則GO∥EC,GO=EC=1,∠GOH=∠C=60°,可推出HG=HO=GO=1,GJ=,OJ=,在Rt△MOJ中,()2+()2=MO2,解得MO=.
解:(1)如圖1所示,
以O為圓心,OD長(zhǎng)為半徑畫(huà)弧,交AB于點(diǎn)H,連接OH,則OH=OD.
∵△ABC為等邊三角形,
∴∠B=∠C=∠A=60°,
∵∠DOE=120°,
∴∠A+∠DOE=180°,
∴∠ADO+∠AEO=180°,
∵∠OEC+∠AEO=180°,
∴∠OEC=∠ADO,
∵∠HDO=∠DHO,
∴∠BHO=∠ADO=∠OEC,
∵O為BC的中點(diǎn),
∴BO=OC,
∴△BHO≌△CEO(AAS),
∴OH=OE,
∴OD=OE.
(2)如圖2所示,
連接BE,取BE的中點(diǎn)G,連接MG并延長(zhǎng)交BC于點(diǎn)H,連接GO,過(guò)點(diǎn)O作OJ垂直MH.
∵M(jìn)為DE中點(diǎn),G為BE中點(diǎn),
∴MG∥DB,MGDB=2,
∴∠MHO=∠ABC=60°,
∵點(diǎn)O為BC的中點(diǎn),點(diǎn)G為BE的中點(diǎn),
∴GO∥EC,GOEC=1,
∴∠GOH=∠C=60°,
△GOH為等邊三角形,
∴HG=HO=GO=1,
∴GJ,OJ,
在Rt△MOJ中,
()2+()2=MO2,
解得:MO.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)企業(yè)生產(chǎn)部有技術(shù)工人15人,生產(chǎn)部為了合理制定產(chǎn)品的每月生產(chǎn)定額,統(tǒng)計(jì)了這15人某月的加工零件數(shù)如下:
每人加工零件數(shù) | 540 | 450 | 300 | 240 | 210 | 120 |
人數(shù) | 1 | 1 | 2 | 6 | 3 | 2 |
(1)寫(xiě)出這15人該月加工零件的平均數(shù)、中位數(shù)和眾數(shù);
(2)生產(chǎn)部負(fù)責(zé)人要定出合理的每人每月生產(chǎn)定額,你認(rèn)為應(yīng)該定為多少件合適?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,△ABC中,AB=AC,∠B、∠C的平分線交于O點(diǎn),過(guò)O點(diǎn)作EF∥BC交AB、AC于E、F.
(1)圖①中有幾個(gè)等腰三角形?猜想:EF與BE、CF之間有怎樣的關(guān)系.
(2)如圖②,若AB≠AC,其他條件不變,圖中還有等腰三角形嗎?如果有,分別指出它們.在第(1)問(wèn)中EF與BE、CF間的關(guān)系還存在嗎?
(3)如圖③,若△ABC中∠B的平分線BO與三角形外角平分線CO交于O,過(guò)O點(diǎn)作OE∥BC交AB于E,交AC于F.這時(shí)圖中還有等腰三角形嗎?EF與BE、CF關(guān)系又如何?說(shuō)明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點(diǎn)A(1,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,3),拋物線的對(duì)稱軸與x軸交于點(diǎn)D.
(1)求二次函數(shù)的表達(dá)式;
(2)在y軸上是否存在一點(diǎn)P,使△PBC為等腰三角形.若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);
(3)有一個(gè)點(diǎn)M從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度在AB上向點(diǎn)B運(yùn)動(dòng),另一個(gè)點(diǎn)N從點(diǎn)D與點(diǎn)M同時(shí)出發(fā),以每秒2個(gè)單位的速度在拋物線的對(duì)稱軸上運(yùn)動(dòng),當(dāng)點(diǎn)M到 達(dá)點(diǎn)B時(shí),點(diǎn)M、N同時(shí)停止運(yùn)動(dòng),問(wèn)點(diǎn)M、N運(yùn)動(dòng)到何處時(shí),△MNB面積最大,試求出最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,∠C=90°,AC=8,BC=6,角平分線AD、BE相交于點(diǎn)O,則四邊形OECD的面積為( )
A.5B.C.D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,O(0,0)、B(a,b),且a、b滿足1﹣2a+a2+(b)2=0.
(1)求a,b的值;
(2)若點(diǎn)A在x軸正半軸上,且OA=2,在平面內(nèi)有一動(dòng)點(diǎn)Q(不在x軸上),QO=m,QA=n,QB=p,且p2=m2+n2,求∠OQA的度數(shù).
(3)閱讀以下內(nèi)容:對(duì)于實(shí)數(shù)a、b有(a﹣b)2≥0,∴a2﹣2ab+b2≥0,
即a2+b2≥2ab.
利用以上知識(shí),在(2)的條件下求△AOQ的面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校有一批復(fù)印任務(wù),原來(lái)由甲復(fù)印社承接,按每100頁(yè)40元計(jì)費(fèi).現(xiàn)乙復(fù)印社表示:若學(xué)校先按月付給一定數(shù)額的承包費(fèi),則可按每100頁(yè)15元收費(fèi).兩復(fù)印社每月收費(fèi)情況如圖所示.根據(jù)圖象回答:
(1)設(shè)兩家復(fù)印社每月復(fù)印任務(wù)為張,分別求出甲復(fù)印社的每月復(fù)印收費(fèi)y甲(元)與乙復(fù)印社的每月復(fù)印收費(fèi)y乙(元)與復(fù)印任務(wù)(張)之見(jiàn)的函數(shù)關(guān)系式.
(2)乙復(fù)印社的每月承包費(fèi)是多少?
(3)當(dāng)每月復(fù)印多少頁(yè)時(shí),兩復(fù)印社實(shí)際收費(fèi)相同?
(4)如果每月復(fù)印頁(yè)數(shù)是1200頁(yè),那么應(yīng)選擇哪個(gè)復(fù)印社.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在Rt△ABC中,∠A=90°,AB=AC,點(diǎn)D,E分別在邊AB,AC上,AD=AE,連接DC,點(diǎn)M,P,N分別為DE,DC,BC的中點(diǎn).
(1)觀察猜想
圖1中,線段PM與PN的數(shù)量關(guān)系是 ,位置關(guān)系是 ;
(2)探究證明
把△ADE繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說(shuō)明理由;
(3)拓展延伸
把△ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請(qǐng)直接寫(xiě)出△PMN面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD、DEFG都是正方形,AB與CG交于點(diǎn)下列結(jié)論:;;;;其中正確的有______;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com