【題目】如圖,在△ABC中,AB=AC=12cm,BC=9cm,點D為AB的中點.
(1)如果點P在線段BC上以3厘米/秒的速度由B向C點運動,同時點Q在線段CA上由C點向A點運動.
①若點Q的運動速度與點P的運動速度相等,當(dāng)經(jīng)過1秒時,△BPD與△CQP是否全等,請判斷并說明理由;
②若點Q的運動速度與點P的運動速度不相等,當(dāng)點Q的運動速度為多少時,能夠使△BPD≌△CPQ?
(2)若點Q以②的運動速度從點C出發(fā),點P以原來運動速度從點B同時出發(fā),都逆時針沿△ABC的三邊運動,求經(jīng)過多長時間,點P與點Q第一次在△ABC的哪條邊上會相遇?
【答案】(1)①是,見解析;②;(2)24秒,BC
【解析】
(1)①先求得BP=CQ=3,PC=BD=6,然后根據(jù)等邊對等角求得∠B=∠C,最后根據(jù)SAS即可證明;
②因為VP≠VQ,所以BP≠CQ,又∠B=∠C,要使△BPD與△CQP全等,只能BP=CP=4.5,根據(jù)全等得出CQ=BD=6,然后根據(jù)運動速度求得運動時間,根據(jù)時間和CQ的長即可求得Q的運動速度;
(2)因為VQ>VP,只能是點Q追上點P,即點Q比點P多走AB+AC的路程,據(jù)此列出方程,解這個方程即可求得.
解答:
(1)①∵t=1(秒)
∴BP=CQ=3(cm)
∵AB=12,D為AB中點
∴BD=6(cm)
又∵PC=BCBP=93=6(cm)
∴PC=BD
∵AB=AC
∴∠B=∠C
在△BPD與△CQP中,
∴△BPD≌△CQP(SAS);
②∵VP≠VQ
∴BP≠CQ
又∵∠B=∠C
要使△BPD≌△CPQ,只能BP=CP=4.5(cm),
∵△BPD≌△CPQ
∴CQ=BD=6(cm)
∴點P的運動時間,
此時.
(2)因為VQ>VP,只能是點Q追上點P,即點Q比點P多走AB+AC的路程,
設(shè)經(jīng)過x秒后P與Q第一次相遇,依題意得4x=3x+2×12,
解得x=24(秒)
此時P運動了24×3=72(cm)
又∵△ABC的周長為33cm,72÷33=2余6,
∴點P、Q在BC邊上相遇,即經(jīng)過了24秒,點P與點Q第一次在BC邊上相遇。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列有四個結(jié)論:①若,則;
②若,,則的值為;
③若的運算結(jié)果中不含項,則;
④若,,則可表示為.
其中正確的是(填序號)是:______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017湖南株洲)如圖示,若△ABC內(nèi)一點P滿足∠PAC=∠PBA=∠PCB,則點P為△ABC的布洛卡點.三角形的布洛卡點(Brocard point)是法國數(shù)學(xué)家和數(shù)學(xué)教育家克洛爾(A.L.Crelle 1780﹣1855)于1816年首次發(fā)現(xiàn),但他的發(fā)現(xiàn)并未被當(dāng)時的人們所注意,1875年,布洛卡點被一個數(shù)學(xué)愛好者法國軍官布洛卡(Brocard 1845﹣1922)重新發(fā)現(xiàn),并用他的名字命名.問題:已知在等腰直角三角形DEF中,∠EDF=90°,若點Q為△DEF的布洛卡點,DQ=1,則EQ+FQ=( )
A. 5 B. 4 C. 3+ D. 2+
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017甘肅省天水市)△ABC和△DEF是兩個全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的頂點E與△ABC的斜邊BC的中點重合,將△DEF繞點E旋轉(zhuǎn),旋轉(zhuǎn)過程中,線段DE與線段AB相交于點P,線段EF與射線CA相交于點Q.
(1)如圖①,當(dāng)點Q在線段AC上,且AP=AQ時,求證:△BPE≌△CQE;
(2)如圖②,當(dāng)點Q在線段CA的延長線上時,求證:△BPE∽△CEQ;并求當(dāng)BP=2,CQ=9時BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,∠B=60°,CD是⊙O的直徑,點P是CD延長線上的一點,且AP=AC.
(1)求證:PA是⊙O的切線;
(2)若PD=,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,①等腰三角形兩腰上的高相等;②在空間中,垂直于同一直線的兩直線平行;③兩條直線被第三條直線所截,內(nèi)錯角相等;④一個角的兩邊與另一個角的兩邊分別平行, 則這兩個角相等. 其中真命題的個數(shù)有 __________個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們已經(jīng)知道,有一個內(nèi)角是直角的三角形是直角三角形.其中直角所在的兩條邊叫直角邊,直角所對的邊叫斜邊(如圖①所示).?dāng)?shù)學(xué)家已發(fā)現(xiàn)在一個直角三角形中,兩個直角邊邊長的平方和等于斜邊長的平方.如果設(shè)直角三角形的兩條直角邊長度分別是a和b,斜邊長度是c,那么可以用數(shù)學(xué)語言表達:a2+b2=c2.已知,如圖,在長方形ABCD中,AB=4,AD=6.延長BC到點E,使CE=3,連接DE.
(1)DE的長為 .
(2)動點P從點B出發(fā),以每秒1個單位的速度沿BC﹣CD﹣DA向終點A運動,設(shè)點P運動的時間為t秒,求當(dāng)t為何值時,△ABP和△DCE全等?
(3)若動點P從點B出發(fā),以每秒1個單位的速度僅沿著BE向終點E運動,連接DP.設(shè)點P運動的時間為t秒,是否存在t,使△PDE為等腰三角形?若存在,請直接寫出t的值;否則,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形紙片.把紙片ABCD折疊,使點B恰好落在CD邊上,折痕為AF.且AB=10cm、AD=8cm、DE=6cm.
(1)求證:平行四邊形ABCD是矩形;
(2)如圖2,以點B為坐標(biāo)原點,水平方向、豎直方向為x軸、y軸建立平面直角坐標(biāo)系,求直線AF的解析式;
(3)在(2)中的坐標(biāo)系內(nèi)是否存在這樣的點P,使得以點P、A、E、F為頂點的四邊形是平行四邊形?若不存在,請說明理由;若存在,直接寫出點P的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售兩種型號的飲水機,八月份銷售A種型號的飲水機150個和B種型號的飲水機200個.
(1)商場八月份銷售飲水機時,A種型號的售價比B種型號的2倍少10元,總銷售額為88500元,那么B種型號的飲水機的單價是每件多少元?
(2)為了提高銷售量,商場九月份銷售飲水機時,A種型號的售價比八月份A種型號售價下降了a%(a>0),且A種型號的銷量比八月份A種型號的銷量提高了a%;B種型號的售價比八月份的B種型號的售價下降了a%,但B種型號的銷售量與八月份的銷售量相同,結(jié)果九月份的總銷售額也是88500元,求a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com