【題目】我市木蘭溪左岸綠道工程已全部建成并投入使用,10公里的河堤便道鋪滿了彩色的透水瀝青,堤岸旁的各類花草爭奇斗艷,與木蘭溪河灘上的特色花草相映成趣,吸引著眾多市民在此休閑鍛煉、散步觀光.某小區(qū)隨機(jī)調(diào)查了部分居民在一周內(nèi)前往木蘭溪左岸綠道鍛煉的次數(shù),并制成如圖不完整的統(tǒng)計圖表:

居民前往木蘭溪左岸綠道鍛煉的次數(shù)統(tǒng)計表

鍛煉次數(shù)

0

1

2

3

4次及以上

人數(shù)

7

13

a

10

3

請你根據(jù)統(tǒng)計圖表中的信息,解答下列問題:

1a   ,b   

2)請計算扇形統(tǒng)計圖中“3所對應(yīng)扇形的圓心角的度數(shù);

3)若該小區(qū)共有2000名居民,根據(jù)調(diào)查結(jié)果,估計該小區(qū)居民在一周內(nèi)前往木蘭溪左岸綠道鍛煉“4次及以上的人數(shù).

【答案】(1) 17、20;(2) 72°;(3) 120

【解析】

(1)根據(jù)1次的人數(shù)以及所占的百分比求出參與調(diào)查的人數(shù),用總?cè)藬?shù)減去其余的人數(shù)可求出a的值,用3次的人數(shù)除以總?cè)藬?shù)即可求得b的值;

(2)360度乘以3次所占的比例即可得;

(3)2000乘以鍛煉“4次及以上所占的比例即可得.

(1)∵被調(diào)查的總?cè)藬?shù)為13÷26%50人,

a50(7+13+10+3)17,

b%×100%20%,即b20

故答案為:17、20

(2)扇形統(tǒng)計圖中“3所對應(yīng)扇形的圓心角的度數(shù)為360°×20%72°;

(3)估計一周內(nèi)前往木蘭溪左岸綠道鍛煉“4次及以上的人數(shù)2000×120人.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校有3000名學(xué)生.為了解全校學(xué)生的上學(xué)方式,該校數(shù)學(xué)興趣小組以問卷調(diào)查的形式,隨機(jī)調(diào)查了該校部分學(xué)生的主要上學(xué)方式(參與問卷調(diào)查的學(xué)生只能從以下六個種類中選擇一類),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖.

種類

A

B

C

D

E

F

上學(xué)方式

電動車

私家車

公共交通

自行車

步行

其他

某校部分學(xué)生主要上學(xué)方式扇形統(tǒng)計圖某校部分學(xué)生主要上學(xué)方式條形統(tǒng)計圖

根據(jù)以上信息,回答下列問題:

(1)參與本次問卷調(diào)查的學(xué)生共有____人,其中選擇B類的人數(shù)有____人.

(2)在扇形統(tǒng)計圖中,求E類對應(yīng)的扇形圓心角α的度數(shù),并補全條形統(tǒng)計圖.

(3)若將A、C、DE這四類上學(xué)方式視為綠色出行,請估計該校每天綠色出行的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,CBG=A,CD為直徑,OCAB相交于點E,過點EEFBC,垂足為F,延長CDGB的延長線于點P,連接BD.

(1)求證:PG與⊙O相切;

(2)若=,求的值;

(3)在(2)的條件下,若⊙O的半徑為8,PD=OD,求OE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖,已知線段,請在給出的圖形上用尺規(guī)作出,使得:點在射線上,點在射線上,且;(保留作圖痕跡,不寫作法)

(2)求證:直角三角形斜邊上的中線等于斜邊的一半.(要求:利用(1)中的Rt,畫出斜邊上的中線,寫出已知、求證和證明過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某排球隊6名場上隊員的身高(單位:cm)是:180,184188,190192,194.現(xiàn)用一名身高為186cm的隊員換下場上身高為192cm的隊員,與換人前相比,場上隊員的身高( )

A. 平均數(shù)變小,中位數(shù)變小

B. 平均數(shù)變小,中位數(shù)變大

C. 平均數(shù)變大,中位數(shù)變小

D. 平均數(shù)變大,中位數(shù)變大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示是二次函數(shù)y=ax2+bx+c的圖象.下列結(jié)論:①二次三項式ax2+bx+c的最大值為4;②使y≤3成立的x的取值范圍是x≤-2;③一元二次方程ax2+bx+c=1的兩根之和為-1;④該拋物線的對稱軸是直線x=-1;4a-2b+c<0.其中正確的結(jié)論有______________.(把所有正確結(jié)論的序號都填在橫線上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑,DA、DC分別切O于點A,C,且AB=AD

1)求tan∠AOD的值.

2AC,OD交于點E,連結(jié)BE

AEB的度數(shù);

連結(jié)BDO于點H,若BC=1,求CH的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD外取一點E,連接AE、BE、DE.過點AAE的垂線交DE于點P.若AE=AP=1,PB=.下列結(jié)論:①△APD≌△AEB;②B到直線AE的距離為;③EBED;④SAPD+SAPB=1+;⑤S正方形ABCD=4+.其中正確結(jié)論的序號是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)生的學(xué)業(yè)負(fù)擔(dān)過重會嚴(yán)重影響學(xué)生對待學(xué)習(xí)的態(tài)度.為此我市教育部門對部分學(xué)校的八年級學(xué)生對待學(xué)習(xí)的態(tài)度進(jìn)行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個層級,A級:對學(xué)習(xí)很感興趣;B級:對學(xué)習(xí)較感興趣;C級:對學(xué)習(xí)不感興趣),并將調(diào)查結(jié)果繪制成圖和圖的統(tǒng)計圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:

1)此次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;

2)將圖補充完整;

3)求出圖C級所占的圓心角的度數(shù);

4)根據(jù)抽樣調(diào)查結(jié)果,請你估計我市近8000名八年級學(xué)生中大約有多少名學(xué)生學(xué)習(xí)態(tài)度達(dá)標(biāo)(達(dá)標(biāo)包括A級和B級)?

查看答案和解析>>

同步練習(xí)冊答案