【題目】如圖,在△ABC中,∠B=90°,AB=6cm,BC=8cm,點(diǎn)P從A點(diǎn)出發(fā)沿AB邊向B以1cm/s的速度移動(dòng),點(diǎn)Q從B點(diǎn)出發(fā)沿BC向C點(diǎn)以2cm/s的速度移動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí)兩個(gè)點(diǎn)同時(shí)停止運(yùn)動(dòng),在兩個(gè)點(diǎn)運(yùn)動(dòng)過(guò)程中,請(qǐng)回答:
(1)經(jīng)過(guò)多少時(shí)間,△PBQ的面積是5cm2?
(2)請(qǐng)你利用配方法,求出經(jīng)過(guò)多少時(shí)間,四邊形APQC面積最?并求出這個(gè)最小值.
【答案】(1)經(jīng)過(guò)1秒,能使△PBQ的面積等于5cm2;(2)經(jīng)過(guò)3秒時(shí),四邊形APQC面積最小,最小值為15 cm2.
【解析】
(1)設(shè)運(yùn)動(dòng)時(shí)間為t秒,根據(jù)題意表示出BP、BQ的長(zhǎng),再根據(jù)三角形的面積公式列方程即可;
(2)根據(jù)四邊形APQC面積=△ABC的面積-△PBQ的面積,求出表示四邊形APQC面積的式子,再配方,然后根據(jù)二次函數(shù)的性質(zhì)即可求解.
(1)設(shè)運(yùn)動(dòng)時(shí)間為t秒,8÷2=4,則0≤t≤4,根據(jù)題意得:
PBBQ=5,
即(6﹣t)2t=5,
t2﹣6t+5=0,
解得t1=1,t2=5(不符合題意,舍去),
所以t=1.
故經(jīng)過(guò)1秒,能使△PBQ的面積等于5cm2;
(2)設(shè)運(yùn)動(dòng)時(shí)間為t秒,根據(jù)題意得:
∵S四邊形APQC=,
∴當(dāng)t=3秒時(shí),S四邊形APQC的最小值為15 cm2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】.Rt△ABC中,已知∠C=90°,∠B=50°,點(diǎn)D在邊BC上,BD=2CD(圖4).把△ABC繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)m(0<m<180)度后,如果點(diǎn)B恰好落在初始Rt△ABC的邊上,那么m=_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為了到高校招聘大學(xué)生,為此設(shè)置了三項(xiàng)測(cè)試:筆試、面試、實(shí)習(xí).學(xué)生的最終成績(jī)由筆試面試、實(shí)習(xí)依次按3:2:5的比例確定.公司初選了若干名大學(xué)生參加筆試,面試,并對(duì)他們的兩項(xiàng)成績(jī)分別進(jìn)行了整理和分析.下面給出了部分信息:
①公司將筆試成績(jī)(百分制)分成了四組,分別為A組:60≤x<70,B組:70≤x<80,C組:80≤x<90,D組:90≤x<100;并繪制了如下的筆試成績(jī)頻數(shù)分布直方圖.其中,C組的分?jǐn)?shù)由低到高依次為:80,81,82,83,83,84,84,85,86,88,88,88,89.
②這些大學(xué)生的筆試、面試成績(jī)的平均數(shù)、中位數(shù)、眾數(shù)、最高分如下表:
平均數(shù) | 中位數(shù) | 眾數(shù) | 最高分 | |
筆試成績(jī) | 81 | m | 92 | 97 |
面試成績(jī) | 80.5 | 84 | 86 | 92 |
根據(jù)以上信息,回答下列問(wèn)題:
(1)這批大學(xué)生中筆試成績(jī)不低于88分的人數(shù)所占百分比為 .
(2)m= 分,若甲同學(xué)參加了本次招聘,他的筆試、面試成績(jī)都是83分,那么該同學(xué)成績(jī)排名靠前的是 成績(jī),理由是 .
(3)乙同學(xué)也參加了本次招聘,筆試成績(jī)雖不是最高分,但也不錯(cuò),分?jǐn)?shù)在D組;面試成績(jī)?yōu)?/span>88分,實(shí)習(xí)成績(jī)?yōu)?/span>80分由表格中的統(tǒng)計(jì)數(shù)據(jù)可知乙同學(xué)的筆試成績(jī)?yōu)?/span> 分;若該公司最終錄用的最低分?jǐn)?shù)線為86分,請(qǐng)通過(guò)計(jì)算說(shuō)明,該同學(xué)最終能否被錄用?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形OABC是矩形,點(diǎn)A坐標(biāo)為(2,0),點(diǎn)C坐標(biāo)為(0,4).點(diǎn)P從點(diǎn)O出發(fā),沿OA以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)A運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)A出發(fā),沿AB以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)B運(yùn)動(dòng),當(dāng)點(diǎn)P與點(diǎn)A重合時(shí)運(yùn)動(dòng)停止.設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)△CBQ與△PAQ相似時(shí),求出t的值;
(2)當(dāng)t=1時(shí),拋物線y=2x2+bx+c經(jīng)過(guò)P,Q兩點(diǎn),與y軸交于點(diǎn)M,在該拋物線上找點(diǎn)D,使∠MQD=∠MPQ,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+3的圖象經(jīng)過(guò)點(diǎn)A(3,0)和點(diǎn)B(4,3).
(1)求二次函數(shù)的表達(dá)式;
(2)求二次函數(shù)圖象的頂點(diǎn)坐標(biāo)和對(duì)稱軸.
(3)直接畫(huà)出函數(shù)的圖象(不列表).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)(x>0)與正比例函數(shù)y=kx、 (k>1)的圖象分別交于點(diǎn)A、B,若∠AOB=45°,則△AOB的面積是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y= x2+bx﹣2與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),且A(﹣1,0).
(1)求拋物線的解析式;
(2)判斷△ABC的形狀,證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A,B分別在函數(shù)y=(k1>0)與函數(shù)y=(k2<0)的圖象上,線段AB的中點(diǎn)M在x軸上,△AOB的面積為4,則k1﹣k2的值為( 。
A.2B.4C.6D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=x2+2x+a﹣3,當(dāng)a=0時(shí),拋物線與y軸交于點(diǎn)A,將點(diǎn)A向左平移4個(gè)單位長(zhǎng)度,得到點(diǎn)B.
(1)求點(diǎn)B的坐標(biāo);
(2)拋物線與直線y=a交于M、N兩點(diǎn),將拋物線在直線y=a下方的部分沿直線y=a翻折,圖象的其他部分保持不變,得到一個(gè)新的圖象,即為圖形M.
①求線段MN的長(zhǎng);
②若圖形M與線段AB恰有兩個(gè)公共點(diǎn),結(jié)合函數(shù)圖象,直接寫(xiě)出a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com