【題目】任意拋擲一枚質(zhì)地均勻的正方體骰子2次,骰子的6個面上分別刻有1到6的點(diǎn)數(shù),記第一次擲得面朝上的點(diǎn)數(shù)為橫坐標(biāo),第二次擲得面朝上的點(diǎn)數(shù)為縱坐標(biāo),這樣組成的點(diǎn)的坐標(biāo)恰好在正比例函數(shù)y=x上的概率為_____.
【答案】
【解析】
首先根據(jù)題意列出表格,然后由表格求得所有等可能的結(jié)果與點(diǎn)(x,y)恰好在直線y=x上的情況,再利用概率公式求得答案.
解:列表得:
1 | 2 | 3 | 4 | 5 | 6 | |
1 | (1,1) | (2,1) | (3,1) | (4,1) | (5,1) | (6,1) |
2 | (1,2) | (2,2) | (3,2) | (4,2) | (5,2) | (6,2) |
3 | (1,3) | (2,3) | (3,3) | (4,3) | (5,3) | (6,3) |
4 | (1,4) | (2,4) | (3,4) | (4,4) | (5,4) | (6,4) |
5 | (1,5) | (2,5) | (3,5) | (4,5) | (5,5) | (6,5) |
6 | (1,6) | (2,6) | (3,6) | (4,6) | (5,6) | (6,6) |
∵共有36種等可能的結(jié)果,點(diǎn)(x,y)恰好在直線y=x上的有6種等可能結(jié)果,
∴這樣組成的點(diǎn)的坐標(biāo)恰好在正比例函數(shù)y=x上的概率為,
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為1,正方形CEFG的面積為,點(diǎn)E在CD邊上,點(diǎn)G在BC的延長線上,設(shè)以線段AD和DE為鄰邊的矩形的面積為,且.
⑴求線段CE的長;
⑵若點(diǎn)H為BC邊的中點(diǎn),連結(jié)HD,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形MNKO和正六邊形ABCDEF邊長均為1,把正方形放在正六邊形外邊,使OK邊與AB邊重合,如圖所示,按下列步驟操作:將正方形在正六邊形外繞點(diǎn)B順時針旋轉(zhuǎn),使KN邊與BC邊重合,完成第一次旋轉(zhuǎn);再繞點(diǎn)C順時針旋轉(zhuǎn),使NM邊與CD邊重合,完成第二次旋轉(zhuǎn);………在這樣連續(xù)6次旋轉(zhuǎn)的過程中,點(diǎn)M在圖中直角坐標(biāo)系中的縱坐標(biāo)可能是( )
A. B. ﹣2.2C. 2.3D. ﹣2.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(diǎn)(-1,0),對稱軸為直線x=2,下列結(jié)論:(1)2a+b=0;(2)9a+c>3b;(3)5a+7b+2c>0;(4)若點(diǎn)A(-3,y1)、點(diǎn)B(,y2)、點(diǎn)C(,y3)在該函數(shù)圖象上,則y1<y2<y3;(5)若方程a(x+1)(x-5)=c的兩根為x1和x2,且x1<x2,則x1<-1<5<x2,其中正確的結(jié)論有( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù) 的圖象交于兩點(diǎn),與軸交于點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,且.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求點(diǎn)的坐標(biāo);
(3)在軸上是否存在點(diǎn),使有最大值,如果存在,請求出點(diǎn)坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:若一個三角形一條邊上的高長為這條邊長的一半,則稱該三角形為這條邊上的“半高”三角形,這條高稱為這條邊上的“半高”,如圖,△ABC是BC邊上的“半高”三角形.點(diǎn)P在邊AB上,PQ∥BC交AC于點(diǎn)Q,PM⊥BC于點(diǎn)M,QN⊥BC于點(diǎn)N,連接MQ.
(1)請證明△APQ為PQ邊上的“半高”三角形.
(2)請?zhí)骄?/span>BM,PM,CN之間的等量關(guān)系,并說明理由;
(3)若△ABC的面積等于16,求MQ的最小值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解學(xué)生平均每天課外閱讀的時間,隨機(jī)調(diào)查了該校部分學(xué)生一周內(nèi)平均每天課外閱讀的時間(以分鐘為單位,并取整數(shù)),將有關(guān)數(shù)據(jù)統(tǒng)計(jì)整理并繪制成尚未完成的頻率分布表和頻數(shù)分布直方圖.請你根據(jù)圖表中所提供的信息,解答下列問題.
頻率分布表
組別 | 分組 | 頻數(shù) | 頻率 |
1 | 15~25 | 7 | 0.14 |
2 | 25~35 | a | 0.24 |
3 | 35~45 | 20 | 0.40 |
4 | 45~55 | 6 | b |
5 | 55~65 | 5 | 0.10 |
注:這里的15~25表示大于等于15同時小于25.
(1)求被調(diào)查的學(xué)生人數(shù);
(2)直接寫出頻率分布表中的a和b的值,并補(bǔ)全頻數(shù)分布直方圖;
(3)若該校共有學(xué)生500名,則平均每天課外閱讀的時間不少于35分鐘的學(xué)生大約有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,∠B=90°,AD=2,AB=4,BC=6,點(diǎn)O是邊BC上一點(diǎn),以O為圓心,OC為半徑的⊙O,與邊AD只有一個公共點(diǎn),則OC的取值范圍是( 。
A. 4<OC≤B. 4≤OC≤C. 4<OCD. 4≤OC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:點(diǎn)P(a,b)關(guān)于原點(diǎn)的對稱點(diǎn)為P′,以PP′為邊作等邊△PP′C,則稱點(diǎn)C為P的“等邊對稱點(diǎn)”;
(1)若P(1,3),求點(diǎn)P的“等邊對稱點(diǎn)”的坐標(biāo).
(2)平面內(nèi)有一點(diǎn)P(1,2),若它其中的一個“等邊對稱點(diǎn)”C在第四象限時,請求此C點(diǎn)的坐標(biāo);
(3)若P點(diǎn)是雙曲線y=(x>0)上一動點(diǎn),當(dāng)點(diǎn)P的“等邊對稱點(diǎn)”點(diǎn)C在第四象限時,
①如圖(1),請問點(diǎn)C是否也會在某一函數(shù)圖象上運(yùn)動?如果是,請求出此函數(shù)的解析式;如果不是,請說明理由.
②如圖(2),已知點(diǎn)A (1,2),B (2,1),點(diǎn)G是線段AB上的動點(diǎn),點(diǎn)F在y軸上,若以A、G、F、C這四個點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時,求點(diǎn)C的縱坐標(biāo)yc的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com