如圖,已知△ABC內(nèi)接于⊙O,且AB=AC,直徑AD交BC于點E,F(xiàn)是OE上的一點,使CF∥BD.
(1)求證:BE=CE;
(2)試判斷四邊形BFCD的形狀,并說明理由;
(3)若BC=8,AD=10,求CD的長.
(1)證明:∵AD是直徑,
∴∠ABD=∠ACD=90°,
在Rt△ABD和Rt△ACD中,
,
∴Rt△ABD≌Rt△ACD,
∴∠BAD=∠CAD,
∵AB=AC,
∴BE=CE;
(2)四邊形BFCD是菱形.
證明:∵AD是直徑,AB=AC,
∴AD⊥BC,BE=CE,
∵CF∥BD,
∴∠FCE=∠DBE,
在△BED和△CEF中
,
∴△BED≌△CEF,
∴CF=BD,
∴四邊形BFCD是平行四邊形,
∵∠BAD=∠CAD,
∴BD=CD,
∴四邊形BFCD是菱形;
(3)解:∵AD是直徑,AD⊥BC,BE=CE,
∴CE2=DE•AE,
設DE=x,
∵BC=8,AD=10,
∴42=x(10﹣x),
解得:x=2或x=8(舍去)
在Rt△CED中,
CD===2.
科目:初中數(shù)學 來源: 題型:
如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點D為邊CB上的一個動點(點D不與點B重合),過D作DO⊥AB,垂足為O,點B′在邊AB上,且與點B關(guān)于直線DO對稱,連接DB′,AD.
(1)求證:△DOB∽△ACB;
(2)若AD平分∠CAB,求線段BD的長;
(3)當△AB′D為等腰三角形時,求線段BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,在4×4的正方形網(wǎng)格中,每個小正方形的頂點稱為格點,左上角陰影部分是一個以格點為頂點的正方形(簡稱格點正方形).若再作一個格點正方形,并涂上陰影,使這兩個格點正方形無重疊面積,且組成的圖形是軸對稱圖形,又是中心對稱圖形,則這個格點正方形的作法共有( 。
| A. | 2種 | B. | 3種 | C. | 4種 | D. | 5種 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,已知△ABC的三邊長為、、,且,若平行于三角形一邊的直線
將△ABC的周長分成相等的兩部分,設圖中的小三角形①、②、③的面積分別為、、
則、、的大小關(guān)系是 (用“<”號連接)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com