【題目】在菱形中,點(diǎn)是對(duì)角線的交點(diǎn),點(diǎn)是邊的中點(diǎn),點(diǎn)在延長(zhǎng)線上,且.
求證:;
如果,請(qǐng)寫出圖中所有的等邊三角形.
【答案】(1)見(jiàn)解析;(2)
【解析】
(1)根據(jù)菱形的性質(zhì)和三角形中位線的性質(zhì)可得,再根據(jù)平行四邊形的判定和性質(zhì)可得EF=OC;
(2)由(1)的結(jié)論和題意可得是等邊三角形,再由菱形的性質(zhì)可得OC= AC,從而可得也是等邊三角形.
證明:四邊形是菱形,,
又∵點(diǎn)E是CD的中點(diǎn),
, ,
又,四邊形是平行四邊形,
;
(2)∵EF=CF,CF=CE,
∴△CEF是等邊三角形;
∵四邊形是平行四邊形,
∴OE=CF,OC=EF,
又∵CE=CF,EF=CF,
∴CE=OE=OC,
△OCE是等邊三角形;
∵四邊形ABCD是菱形,
∴OC=AC,AD=CD=AB=BC,
又∵CE=CD,OC=CE,
∴AC=CD= AD=AB=BC,
∴△ABC,△ACD是等邊三角形;
綜上所述:圖中的等邊三角形有:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,廣場(chǎng)上有一風(fēng)箏A,小江抓著風(fēng)箏線的一端站在D處,他從牽引端E測(cè)得風(fēng)箏A的仰角為67°,同一時(shí)刻小蕓在附近一座距地面30米高(BC=30米)的居民樓頂B處測(cè)得風(fēng)箏A的仰角是45°,已知小江與居民樓的距離CD=40米,牽引端距地面高度DE=1.5米,根據(jù)以上條件計(jì)算風(fēng)箏距地面的高度(結(jié)果精確到0.1米,參考數(shù)據(jù):sin67°≈,cos67°≈,tan67°≈,≈1.414).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在某校圖書館門前一段筆直的內(nèi)部道路AB上,過(guò)往車輛限速3米/秒在點(diǎn)B的正上方距其7米高的C處有一個(gè)探測(cè)儀.一輛轎車從點(diǎn)A勻速向點(diǎn)B行駛5秒后此轎車到達(dá)D點(diǎn),探測(cè)儀測(cè)得∠CAB=18°,∠CDB=45°,求AD之間的距離,并判斷此轎車是否超速,(結(jié)果精確到0.01米)(參考數(shù)據(jù):sinl8°=0.309,cosl8°=0.951,tanl8°=0.325)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖 1,在△ABC 中,∠ACB=90°,BC=AC,點(diǎn) D 在 AB 上,DE⊥AB交 BC 于 E,點(diǎn) F 是 AE 的中點(diǎn)
(1) 寫出線段 FD 與線段 FC 的關(guān)系并證明;
(2) 如圖 2,將△BDE 繞點(diǎn) B 逆時(shí)針旋轉(zhuǎn)α(0°<α<90°),其它條件不變,線段 FD 與線段 FC 的關(guān)系是否變化,寫出你的結(jié)論并證明;
(3) 將△BDE 繞點(diǎn) B 逆時(shí)針旋轉(zhuǎn)一周,如果 BC=4,BE=2,直接寫出線段 BF 的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD中,∠ABC=60°,E為AB中點(diǎn),F為BC上一點(diǎn),GカCD上一點(diǎn),連接EF,FG,且∠BFE=∠CFG.
(1)若G為CD中點(diǎn)吋,求證:EF=FG;
(2)設(shè),,求y芙于x的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC長(zhǎng)為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F點(diǎn)若點(diǎn)D為BC邊的中點(diǎn),點(diǎn)M為線段EF上一動(dòng)點(diǎn),則周長(zhǎng)的最小值為
A. 6 B. 8 C. 10 D. 12
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線與拋物線相交于A,B兩點(diǎn),且點(diǎn)A(1,-4)為拋物線的頂點(diǎn),點(diǎn)B在x軸上。
(1)求拋物線的解析式;
(2)在(1)中拋物線的第二象限圖象上是否存在一點(diǎn)P,使△POB與△POC全等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若點(diǎn)Q是y軸上一點(diǎn),且△ABQ為直角三角形,求點(diǎn)Q的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,數(shù)軸上三個(gè)點(diǎn)A、O、P,點(diǎn)O是原點(diǎn),固定不動(dòng),點(diǎn)A和B可以移動(dòng),點(diǎn)A表示的數(shù)為,點(diǎn)B表示的數(shù)為.
(1)若A、B移動(dòng)到如圖所示位置,計(jì)算的值.
(2)在(1)的情況下,B點(diǎn)不動(dòng),點(diǎn)A向左移動(dòng)3個(gè)單位長(zhǎng),寫出A點(diǎn)對(duì)應(yīng)的數(shù),并計(jì)算.
(3)在(1)的情況下,點(diǎn)A不動(dòng),點(diǎn)B向右移動(dòng)15.3個(gè)單位長(zhǎng),此時(shí)比大多少?請(qǐng)列式計(jì)算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將平行四邊形紙片ABCD按如圖方式折疊,使點(diǎn)C與點(diǎn)A重合,點(diǎn)D落到D’處,折痕為EF.
(1)、求證:△ABE≌△AD’F;
(2)、連接CF,判斷四邊形AECF是否為平行四邊形?請(qǐng)證明你的結(jié)論。
(3)、若AE=5,求四邊形AECF的周長(zhǎng)。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com