【題目】如圖,一次函數(shù)的圖象與軸、軸分別相交于A、B兩點(diǎn),且與反比例函數(shù)的圖象在第二象限交于點(diǎn)C.如果點(diǎn)A的坐標(biāo)為(4,0),OA=2OB,點(diǎn) BAC的中點(diǎn).

1)求點(diǎn)C的坐標(biāo);

2)求一次函數(shù)和反比例函數(shù)的解析式.

【答案】解:CD⊥軸于D,

∴CD∥BO

∵OA=2OB

∴OB=2

點(diǎn)BAC的中點(diǎn),

∴OAD的中點(diǎn).

∴OD=OA=4CD=2OB=4

點(diǎn)C的坐標(biāo)為

設(shè)反比例函數(shù)的解析式為,

所求反比例函數(shù)的解析式為

設(shè)一次函數(shù)為,

∵A4,0),C,

解得:

所求一次函數(shù)的解析式為

【解析】試題分析:(1)作CD⊥軸于D,可得CD∥BO.根據(jù)點(diǎn)A的坐標(biāo)為(4,0),OA=2OB,求出B點(diǎn)坐標(biāo),根據(jù)點(diǎn)BAC的中點(diǎn),可知OAD的中點(diǎn).即可得到點(diǎn)C的坐標(biāo);(2)設(shè)反比例函數(shù)解析式為,代入C點(diǎn)坐標(biāo),解得即可;設(shè)一次函數(shù)的解析式y=kx+b,將點(diǎn)A、點(diǎn)C的坐標(biāo)代入,運(yùn)用待定系數(shù)法即可求出一次函數(shù)的解析式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,E、F分別是正方形ABCD的邊CD,AD上的點(diǎn),且CE=DF,AE,BF相交于點(diǎn)O,下列結(jié)論①AE=BF;②AEBF;③AO=OE;④SAOB=S四邊形DEOF中,錯誤的有( )

A.1個 B.2個 C.3個 D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實(shí)踐:

下面是一個有關(guān)平行四邊形和等邊三角形的小實(shí)驗(yàn),請根據(jù)實(shí)驗(yàn)解答問題:

已知在ABCD中,∠ABC120°,點(diǎn)D又是等邊三角形DEF的一個頂點(diǎn),DEAB相交于點(diǎn)MDFBC相交于點(diǎn)N(不包括線段的端點(diǎn))

(1)初步嘗試:

如圖①,若ABBC,求證:BDBMBN;

(2)探究發(fā)現(xiàn):

如圖②,若BC2AB,過點(diǎn)DDHBC于點(diǎn)H,求證:∠BDC90°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)ykxb的圖象經(jīng)過A(2,1),B(1,3)兩點(diǎn),并且交x軸于點(diǎn)C,交y軸于點(diǎn)D.

1)求該一次函數(shù)的解析式;

2)求點(diǎn)C和點(diǎn)D的坐標(biāo);

3)求△AOB的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將△ABO繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到△AB1C1的位置,點(diǎn)B、O分別落在點(diǎn)B1、C1處,點(diǎn)B1在x軸上,再將△AB1C1繞點(diǎn)B1順時(shí)針旋轉(zhuǎn)到△A1B1C2的位置,點(diǎn)C2在x軸上,將△A1B1C2繞點(diǎn)C2順時(shí)針旋轉(zhuǎn)到△A2B2C2的位置,點(diǎn)A2在x軸上,依次進(jìn)行下去….若點(diǎn)A( ,0),B(0,2),則點(diǎn)B2016的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=2x+m(m>0)x軸交于點(diǎn)A(-2,0),直線y=-x+n(n>0)x軸、y軸分別交于B、C兩點(diǎn),并與直線y=2x+m(m>0)相交于點(diǎn)D,若AB=4

1)求點(diǎn)D的坐標(biāo);

2)求出四邊形AOCD的面積;

3)若Ex軸上一點(diǎn),且ACE為等腰三角形,直接寫出點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個不等實(shí)根x1、x2
(1)求實(shí)數(shù)k的取值范圍.
(2)若方程兩實(shí)根x1、x2滿足x1+x2=﹣x1x2 , 求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在﹣1,0,1,2,3這五個數(shù)中任取兩數(shù)m,n,則二次函數(shù)y=﹣(x+m)2﹣n的頂點(diǎn)在x軸上的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.

求證:(1)EC=BF;(2)EC⊥BF.

查看答案和解析>>

同步練習(xí)冊答案