【題目】如圖,在△ABC中,AB=AC,以AC為直徑作⊙O交BC于點D,過點D作⊙O的切線,交AB于點E,交CA的延長線于點F.
(1)求證:EF⊥AB;
(2)若∠C=30°,EF=,求EB的長.
【答案】(1)證明詳見解析;(2).
【解析】
試題分析:(1)連接OD,AD,只要證明OD是△ABC中位線即可解決問題.
(2)首先證明AE是△ODF中位線,在Rt△AEF中求出AE,再求出OD,根據AB=2OD,求出AB即可問題.
試題解析:(1)連接OD,AD,
∵AC為⊙O的直徑,
∴∠ADC=90°.
又∵AB=AC,
∴CD=DB.又CO=AO,
∴OD∥AB.
∵FD是⊙O的切線,
∴OD⊥DF.∴FE⊥AB.
(2)∵∠C=30°,
∴∠AOD=60°,
在Rt△ODF中,∠ODF=90°,
∴∠F=30°,
∴OA=OD=OF,
在Rt△AEF中,∠AEF=90°,∠F=30°
∵EF=,
∴AE=EFtan30°=.
∵OD∥AB,OA=OC=AF,
∴OD=2AE=,AB=2OD=,
∴EB=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC的三個頂點在格點上.
(1)畫出△A1B1C1,使它與△ABC關于直線a對稱;
(2)求出△A1B1C1的面積.
(3)在直線a上畫出點P,使PA+PC最小.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算:
(1)25.3+(﹣7.3)+(﹣13.7)+7.3
(2)(1﹣1 ﹣ + )×(﹣24)
(3)33.1﹣10.7﹣(﹣22.9)﹣|﹣ |
(4)29 ×(﹣12)
(5)[﹣22﹣( ﹣ + )×36]÷5.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD的每個頂點上寫一個數(shù),把這個正方形每條邊的兩端點上的數(shù)加起來,將和寫在這條邊上,已知AB上的數(shù)是3,BC上的數(shù)是7,CD上的數(shù)是12,則AD上的數(shù)是( 。
A.2
B.7
C.8
D.15
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,在△ABC中,∠C=120°,邊AC的垂直平分線DE與AC、AB分別交于點D和點E.
(1)作出邊AC的垂直平分線DE;
(2)當AE=BC時,求∠A的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com