(2001•黑龍江)如圖,將半徑為2的圓形紙片,沿半徑OA、OB將其裁成1:3兩個部分,用所得扇形圍成圓錐的側面,則圓錐的底面半徑為( )

A.
B.1
C.1或3
D.
【答案】分析:利用勾股定理,弧長公式,圓的周長公式求解.
解答:解:如圖,分兩種情況,
①設扇形S2做成圓錐的底面半徑為R2,
由題意知:扇形S2的圓心角為270度,
則它的弧長==2πR2,R2=;

②設扇形S1做成圓錐的底面半徑為R1
由題意知:扇形S1的圓心角為90度,
則它的弧長==2πR1,R1=
故選D.
點評:本題利用了勾股定理,弧長公式,圓的周長公式求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2001•黑龍江)如圖,在同一直角坐標系內,直線l1:y=(k-2)x+k,和l2:y=kx的位置可能是( 。

查看答案和解析>>

科目:初中數(shù)學 來源:2001年全國中考數(shù)學試題匯編《圖形的相似》(03)(解析版) 題型:解答題

(2001•黑龍江)如圖,在平行四邊形ABCD中,AB=4cm,BC=1cm,E是CD邊上一動點,AE、BC的延長線交于點F.設DE=x(cm),BF=y(cm).
(1)求y(cm)與x(cm)之間的函數(shù)關系式,并寫出自變量x的取值范圍;
(2)畫出此函數(shù)的圖象.

查看答案和解析>>

科目:初中數(shù)學 來源:2001年全國中考數(shù)學試題匯編《圖形的相似》(02)(解析版) 題型:解答題

(2001•黑龍江)如圖,直徑為13的⊙O′經(jīng)過原點O,并且與x軸、y軸分別交于A、B兩點,線段OA、OB(OA>OB)的長分別是方程x2+kx+60=0的兩根.
(1)求線段OA、OB的長;
(2)已知點C在劣弧OA上,連接BC交OA于D,當OC2=CD•CB時,求C點的坐標;
(3)在(2)問的條件下,在⊙O′上是否存在點P,使S△POD=S△ABD?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2001年全國中考數(shù)學試題匯編《四邊形》(03)(解析版) 題型:解答題

(2001•黑龍江)如圖,直徑為13的⊙O′經(jīng)過原點O,并且與x軸、y軸分別交于A、B兩點,線段OA、OB(OA>OB)的長分別是方程x2+kx+60=0的兩根.
(1)求線段OA、OB的長;
(2)已知點C在劣弧OA上,連接BC交OA于D,當OC2=CD•CB時,求C點的坐標;
(3)在(2)問的條件下,在⊙O′上是否存在點P,使S△POD=S△ABD?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2001年黑龍江省中考數(shù)學試卷(解析版) 題型:填空題

(2001•黑龍江)拋物線y=ax2+bx+c經(jīng)過點(1,0),(-1,-6),(2,6),則該拋物線與y軸交點的縱坐標為   

查看答案和解析>>

同步練習冊答案