【題目】 中,點邊上一點,點中點,連接,交于點,且;

(1)如圖1,若,求的值;

(2)如圖2,若平分,且,過點于點,求證:.

【答案】(1) (2)證明見解析

【解析】

(1)過點作于點,根據(jù)平行四邊形的性質(zhì)得到,進而證明為等腰直角三角形,根據(jù)勾股定理即可求出的長度,進而求出

根據(jù)即可求解.

(2)延長交于點,證明 ,得到,證明 ,得到,求出,即可證明.

(1)解:過點作于點

中,

,

,

為等腰直角三角形

,,

,

,

中,,,

由勾股定理得:.

(2)證明:延長交于點

中,,則

中點

平分,且

,

,

中,,

,

,

,

,

,

,

方法2:可證明四點共圓

方法3: 可求出,利用計算方法求出

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】音樂噴泉(圖1)可以使噴水造型隨音樂的節(jié)奏起伏變化而變化.某種音樂噴泉形狀如拋物線,設其出水口為原點,出水口離岸邊18m,音樂變化時,拋物線的頂點在直線y=kx上變動,從而產(chǎn)生一組不同的拋物線(圖2),這組拋物線的統(tǒng)一形式為y=ax2+bx.

(1)若已知k=1,且噴出的拋物線水線最大高度達3m,求此時a、b的值;

(2)若k=1,噴出的水恰好達到岸邊,則此時噴出的拋物線水線最大高度是多少米?

(3)若k=3,a=﹣,則噴出的拋物線水線能否達到岸邊?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=x+2與坐標軸相交于A,B兩點,與反比例函數(shù)y=在第一象限交點C(1,a).求:

(1)反比例函數(shù)的解析式;

(2)AOC的面積;

(3)不等式x+2﹣<0的解集(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知反比例函數(shù)y1的圖象與一次函數(shù)y2ax+b的圖象交于點A(1,4)和點Bm,﹣2).

(1)分別求出這兩個函數(shù)的關系式;

(2)觀察圖象,直接寫出關于x的不等式axb>0的解集;

(3)如果點C與點A關于x軸對稱,求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A、B是反比例函數(shù)yk≠0)圖象上的兩點,延長線段ABy 軸于點C,且點B為線段AC中點,過點AADx軸子點D,點E 為線段OD的三等分點,且OEDE.連接AEBE,若SABE7,則k的值為(  )

A. 12 B. 10 C. 9 D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的邊AD與x軸平行,A、B兩點的橫坐標分別為1和3,反比例函數(shù)y=的圖象經(jīng)過A、B兩點,則菱形ABCD的面積是_____;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在矩形ABCD中,AB=2,BC=6,點E從點D出發(fā),沿DA方向以每秒1個單位的速度向點A運動,點F從點B出發(fā),沿射線AB以每秒3個單位的速度運動,當點E運動到點A時,E、F兩點停止運動.連結(jié)BD,過點E作EH⊥BD,垂足為H,連結(jié)EF,交BD于點G,交BC于點M,連結(jié)CF.

(1)△CDE與△CBF相似嗎?為什么?

(2)求證:∠DBC=∠EFC;

(3)同線段GH的值是定值嗎?如果不是,請說明理由;如果是,求出這個定值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,陽光下,小亮的身高如圖中線段AB所示,他在地面上的影子如圖中線段BC所示,線段DE表示旗桿的高,線段FG表示一堵高墻.

1)請你在圖中畫出旗桿在同一時刻陽光照射下形成的影子,并用線段表示;

2)如果小亮的身高AB=1.6m,他的影子BC=2.4m,旗桿的高DE=15m,旗桿與高墻的距離EG=16m,請求出旗桿的影子落在墻上的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一條河的北岸有兩個目標M、N,現(xiàn)在位于它的對岸設定兩個觀測點A、B.已知ABMN,在A點測得∠MAB=60°,在B點測得∠MBA=45°,AB=600米.

(1)求點MAB的距離;(結(jié)果保留根號)

(2)B點又測得∠NBA=53°,求MN的長.(結(jié)果精確到1米)

(參考數(shù)據(jù):≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)

查看答案和解析>>

同步練習冊答案