【題目】某商場舉行開業(yè)酬賓活動,設立了兩個可以自由轉(zhuǎn)動的轉(zhuǎn)盤(如圖所示,兩個轉(zhuǎn)盤均被等分),并規(guī)定:顧客購買滿188元的商品,即可任選一個轉(zhuǎn)盤轉(zhuǎn)動一次,轉(zhuǎn)盤停止后,指針所指區(qū)域內(nèi)容即為優(yōu)惠方式;若指針所指區(qū)域空白,則無優(yōu)惠.已知小張在該商場消費300元
(1)若他選擇轉(zhuǎn)動轉(zhuǎn)盤1,則他能得到優(yōu)惠的概率為多少?
(2)選擇轉(zhuǎn)動轉(zhuǎn)盤1和轉(zhuǎn)盤2,哪種方式對于小張更合算,請通過計算加以說明.
【答案】(1);(2)轉(zhuǎn)動轉(zhuǎn)盤1更優(yōu)惠.
【解析】試題分析:(1)根據(jù)轉(zhuǎn)盤1,利用概率公式求得獲得優(yōu)惠的概率即可;
(2)分別求得轉(zhuǎn)動兩個轉(zhuǎn)盤所獲得的優(yōu)惠,然后比較即可得到結(jié)論.
試題解析:(1)∵整個圓被分成了12個扇形,其中有6個扇形能享受折扣,∴P(得到優(yōu)惠)==;
(2)轉(zhuǎn)盤1能獲得的優(yōu)惠為: =25元,轉(zhuǎn)盤2能獲得的優(yōu)惠為:40×=20元,所以選擇轉(zhuǎn)動轉(zhuǎn)盤1更優(yōu)惠.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,有一條直線l:y=+4與x軸、y軸分別交于點M、N,一個高為3的等邊三角形ABC,邊BC在x軸上,將此三角形沿著x軸的正方向平移
(1)在平移過程中,得到△A1B1C1,此時頂點A1恰落在直線l上,寫出A1點的坐標;
(2)繼續(xù)向右平移,得到△A2B2C2,此時△A2B2C2的三邊中垂線的交點P(即外心)恰好落在直線l上,求P點的坐標;
(3)在直線l上是否存在這樣的點,與(2)中的A2、B2、C2任意兩點能同時構(gòu)成三個等腰三角形?如果存在,求出點的坐標;如果不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BCA=120°,∠A=15°,AC=5,點M、N分別是AB、AC上動點,則CM+MN的最小值為____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與探究
如圖,在平面直角坐標系中,直線交軸于點,交軸于點,且與直線相交于點,動點在軸上運動.
(1)求直線的函數(shù)表達式;
(2)求使的周長最小時點的坐標;
(3)在軸上是否存在點,使是以為直角邊的直角三角形?如果存在,直接寫出點的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=6,BC=10,點E在CD上,將△BCE沿BE折疊,點C恰落在邊AD上的點F處;點G在AF上,將△ABG沿BG折疊,點A恰落在線段BF上的點H處,①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S△FGH;④AG+DF=FG.則下列結(jié)論正確的有( )
A. ①②④ B. ①③④ C. ②③④ D. ①②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,反比例函數(shù)的圖象過點A(1,6).
(1)求反比例函數(shù)的表達式;
(2)過點A的直線與反比例函數(shù) 圖象的另一個交點為B,與x軸交于點P,若AP=2PB,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(12分)如圖,拋物線y=ax2+bx+c(a≠0)與y軸交于點C(0,4),與x軸交于點A和點B,其中點A的坐標為(﹣2,0),拋物線的對稱軸x=1與拋物線交于點D,與直線BC交于點E.
(1)求拋物線的解析式;
(2)若點F是直線BC上方的拋物線上的一個動點,是否存在點F使四邊形ABFC的面積為17,若存在,求出點F的坐標;若不存在,請說明理由;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點P、D分別是BC、AC邊上的點,且∠APD=∠B.
(1)求證:AC·CD=CP·BP;
(2)若AB=10,BC=12,當PD∥AB時,求BP的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com