如圖,在平面直角坐標(biāo)系中,△ABC是⊙O的內(nèi)接三角形,AB=AC,點P是的中點,連接PA,PB,PC.
(1)如圖①,若∠BPC=60°,求證:

(2)如圖②,若,求的值.
(1)先根據(jù)圓周角定理可得∠BAC=∠BPC=60°,即可證得△ABC為等邊三角形,則可得∠ACB=60°,由點P是弧AB的中點,可得∠ACP=30°,再結(jié)合∠APC=∠ABC=60°即可求得結(jié)果;(2)

試題分析:(1)先根據(jù)圓周角定理可得∠BAC=∠BPC=60°,即可證得△ABC為等邊三角形,則可得∠ACB=60°,由點P是弧AB的中點,可得∠ACP=30°,再結(jié)合∠APC=∠ABC=60°即可求得結(jié)果;
(2)連接AO并延長交PC于F,過點E作EG⊥AC于G,連接OC.由AB=AC可得AF⊥BC,BF=CF.由點P是弧AB中點可得∠ACP=∠PCB,即可得到EG=EF.由∠BPC=∠FOC可得sin∠FOC=sin∠BPC=.設(shè)FC=24a,根據(jù)勾股定理可得OC=OA=25a,則OF=7a,AF=32a.在Rt△AFC中,根據(jù)勾股定理可表示出AC的長,在Rt△AGE和Rt△AFC中,根據(jù)三角函數(shù)的定義求解即可.
(1)∵弧BC=弧BC
∴∠BAC=∠BPC=60°.
又∵AB=AC,
∴△ABC為等邊三角形
∴∠ACB=60°,
∵點P是弧AB的中點,
∴∠ACP=30°,
又∠APC=∠ABC=60°,
∴AC=AP;
(2)連接AO并延長交PC于F,過點E作EG⊥AC于G,連接OC.

∵AB=AC,
∴AF⊥BC,BF=CF.
∵點P是弧AB中點,
∴∠ACP=∠PCB,
∴EG=EF.
∵∠BPC=∠FOC,
∴sin∠FOC=sin∠BPC=
設(shè)FC=24a,則OC=OA=25a,
∴OF=7a,AF=32a.
在Rt△AFC中,AC2=AF2+FC2,
∴AC=40a.
在Rt△AGE和Rt△AFC中,sin∠FAC=,
,
∴EG=12a.
∴tan∠PAB=tan∠PCB=
點評:此類問題是初中數(shù)學(xué)的重點和難點,在中考中極為常見,一般以壓軸題形式出現(xiàn),難度較大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在△ABC中,AB=4,AC=6,∠BAC=60º,∠BAC的角平分線交△ABC的外接圓⊙O于點E,則AE的長為       .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點A、B在⊙O上,直線AC是⊙O的切線,OC⊥OB,連接AB交OC于點D.

(1)AC與CD相等嗎?為什么?
(2)若AC=2,AO=,求OD的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,A、D、B、C是⊙O上的四點,∠ADC=∠CDB=60°,判斷△ABC的形狀并證明你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知△ABC為等腰直角三角形,D為斜邊BC的中點,經(jīng)過點A、D的⊙O與△ABC三邊分別交于點E、F、M.對于如下四個結(jié)論:①∠EMB=∠FMC;②AE+AF=AC;③△DEF∽△ABC;④四邊形AEMF是矩形.其中正確結(jié)論的個數(shù)是

A.4        B.3             C.2              D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知點E在直角△ABC的斜邊AB上,以AE為直徑的⊙O與直角邊BC相切于點D.

(1)求證:AD平分∠BAC;
(2)若BE=2,BD=4,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在5×5正方形網(wǎng)格中,一條圓弧經(jīng)過A,B,C三點,那么這條圓弧所在圓的圓心是   (  )  
A.點PB.點QC.點R D.點M

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

某校初一新生來自甲、乙、丙三所不同小學(xué),其人數(shù)比為2:3:5,如圖所示的扇形圖表示上述分布情況.已知來自甲小學(xué)的為180人,則下列說法不正確的是(   )
A.扇形甲的圓心角是72°B.學(xué)生的總?cè)藬?shù)是900人
C.丙校的人數(shù)比乙校的人數(shù)多180人D.甲校的人數(shù)比丙校的人數(shù)少180人

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,⊙O的半徑為4,點A、B、C在⊙O上,且∠ACB=45°,則弦AB的長是( )

A.            B.4              C.           D.3

查看答案和解析>>

同步練習(xí)冊答案