【題目】從2021年起,江蘇省高考采用“”模式:“3”是指語文、數(shù)學、外語3科為必選科目,“1”是指在物理、歷史2科中任選科,“2”是指在化學、生物、思想政治、地理4科中任選2科.
(1)若小麗在“1”中選擇了歷史,在“2”中已選擇了地理,則她選擇生物的概率是________;
(2)若小明在“1”中選擇了物理,用畫樹狀圖的方法求他在“2中選化學、生物的概率.
科目:初中數(shù)學 來源: 題型:
【題目】某青春黨支部在精準扶貧活動中,給結(jié)對幫扶的貧困家庭贈送甲、乙兩種樹苗讓其栽種.已知乙種樹苗的價格比甲種樹苗貴10元,用480元購買乙種樹苗的棵數(shù)恰好與用360元購買甲種樹苗的棵數(shù)相同.
(1)求甲、乙兩種樹苗每棵的價格各是多少元?
(2)在實際幫扶中,他們決定再次購買甲、乙兩種樹苗共50棵,此時,甲種樹苗的售價比第一次購買時降低了10%,乙種樹苗的售價不變,如果再次購買兩種樹苗的總費用不超過1500元,那么他們最多可購買多少棵乙種樹苗?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D為AB邊上的一點,以AD為直徑的⊙O交BC于點E,交AC于點F,過點C作CG⊥AB交AB于點G,交AE于點H,過點E的弦EP交AB于點Q(EP不是直徑),點Q為弦EP的中點,連結(jié)BP,BP恰好為⊙O的切線.
(1)求證:BC是⊙O的切線.
(2)求證:=.
(3)若sin∠ABC═,AC=15,求四邊形CHQE的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,為坐標原點,直線交二次函數(shù)的圖像于點,,點在該二次函數(shù)的圖像上,設(shè)過點(其中)且平行于軸的直線交直線于點,交直線于點,以線段、為鄰邊作矩形.
(1)若點的橫坐標為8.
①用含的代數(shù)式表示的坐標;
②點能否落在該二次函數(shù)的圖像上?若能,求出的值;若不能,請說明理由;
(2)當時,若點恰好落在該二次函數(shù)的圖像上,請直接寫出此時滿足條件的所有直線的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與x軸相交于兩點(點在點的左側(cè)),與軸相交于點.為拋物線上一點,橫坐標為,且.
⑴求此拋物線的解析式;
⑵當點位于軸下方時,求面積的最大值;
⑶設(shè)此拋物線在點與點之間部分(含點和點)最高點與最低點的縱坐標之差為.
①求關(guān)于的函數(shù)解析式,并寫出自變量的取值范圍;
②當時,直接寫出的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,點為矩形對角線上一點,過點作,分別交、于點、.若,,的面積為,的面積為,則________;
(2)如圖2,點為內(nèi)一點(點不在上),點、、、分別為各邊的中點.設(shè)四邊形的面積為,四邊形的面積為(其中),求的面積(用含、的代數(shù)式表示);
(3)如圖3,點為內(nèi)一點(點不在上)過點作,,與各邊分別相交于點、、、.設(shè)四邊形的面積為,四邊形的面積為(其中),求的面積(用含、的代數(shù)式表示);
(4)如圖4,點、、、把四等分.請你在圓內(nèi)選一點(點不在、上),設(shè)、、圍成的封閉圖形的面積為,、、圍成的封閉圖形的面積為,的面積為,的面積為.根據(jù)你選的點的位置,直接寫出一個含有、、、的等式(寫出一種情況即可).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,雙曲線與直線相交于點和B,過B點作軸于點C,連接AC,已知.
(1)求的值;
(2)延長AC交雙曲線于另一點D,求D的的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線L1:(常數(shù)t>0)與軸的負半軸交于點G,頂點為Q,過Q作QM⊥軸交軸于點M,交雙曲線L2:于點P,且OG·MP=4.
(1)求值;
(2)當t=2時,求PQ的長;
(3)當P是QM的中點時,求t的值;
(4)拋物線L1與拋物線L2所圍成的區(qū)域(不含標界)內(nèi)整點(點的橫、縱坐標都是整數(shù))的個數(shù)有且只有1個,直接寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】設(shè)等邊三角形的內(nèi)切圓半徑為外接圓半徑為,平面內(nèi)任意一點到等邊三角形中心的距離為若滿足則稱點叫做等邊三角形的中心關(guān)聯(lián)點.在平面直角坐標系中,等邊的三個頂點的坐標分別為.
(1)①等邊中心的坐標為 ;
②已知點在中,是等邊的中心關(guān)聯(lián)點的是 ;
(2)如圖1,過點作直線交軸正半軸于使.
①若線段上存在等邊的中心關(guān)聯(lián)點求的取值范圍;
②將直線向下平移得到直線當滿足什么條件時,直線上總存在等邊的中心關(guān)聯(lián)點;
(3)如圖2,點為直線上一動點,的半徑為當從點出發(fā),以每秒個單位的速度向右移動,運動時間為秒.是否存在某一時刻使得上所有點都是等邊的中心關(guān)聯(lián)點?如果存在,請直接寫出所有符合題意的的值;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com