【題目】矩形ABCD的對角線交于O點(diǎn),一條邊的長為1,△AOB是正三角形,則這個(gè)矩形的周長為________

【答案】2+.

【解析】

畫出圖形,根據(jù)矩形的對角線互相平分且相等可得AC=2OB,再根據(jù)等邊三角形的三邊都相等,然后求出AC=2AB,然后分①AB=1時(shí),利用勾股定理列式求出BC,②BC=1時(shí),利用勾股定理列式求出AB的長,再根據(jù)矩形的周長公式列式計(jì)算即可得解.

解:在矩形ABCD中,AC=2OB
∵△AOB是正三角形,
OB=AB,
AC=2AB,
AB=1時(shí),AC=2,
根據(jù)勾股定理,BC=
所以,矩形的周長=2AB+BC=21+=2+2;
BC=1時(shí),根據(jù)勾股定理,AB2+BC2=AC2
所以,AB2+12=2AB2,
解得AB=,
所以,矩形的周長=2AB+BC=2+1=+2;
綜上所述,矩形的周長為2+2+2
故答案為:2+2+2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A′B′C′是由ABC經(jīng)過平移得到的,它們各頂點(diǎn)在平面直角坐標(biāo)系中的坐標(biāo)如下表所示:

ABC

A(a,0)

B(3,0)

C(5,5)

A′B′C′

A′(4,2)

B′(7,b)

C′(c,7)

(1)觀察表中各對應(yīng)點(diǎn)坐標(biāo)的變化,并填空:a=________,b=________,c=________;

(2)在平面直角坐標(biāo)系中畫出ABC及平移后的A′B′C′;

(3)直接寫出A′B′C′的面積是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某學(xué)校學(xué)生的個(gè)性特長發(fā)展情況,在全校范圍內(nèi)隨機(jī)抽查了部分學(xué)生參加音樂、體育、美術(shù)、書法等活動項(xiàng)目(每人只限一項(xiàng))的情況.并將所得數(shù)據(jù)進(jìn)行了統(tǒng)計(jì),結(jié)果如圖所示.

(1)求在這次調(diào)查中,一共抽查了多少名學(xué)生;

(2)求出扇形統(tǒng)計(jì)圖中參加音樂活動項(xiàng)目所對扇形的圓心角的度數(shù);

(3)若該校有2400名學(xué)生,請估計(jì)該校參加美術(shù)活動項(xiàng)目的人數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖,正方形中,點(diǎn),分別在邊上,,延長到點(diǎn),使,連結(jié),.求證:.

2)如圖,等腰直角三角形中,,點(diǎn),在邊上,且,若,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是用4個(gè)全等的直角三角形與1個(gè)小正方形鑲嵌而成的正方形圖案.已知大正方形面積為49,小正方形面積為4,若用x,y表示直角三角形的兩直角邊(xy),下列四個(gè)說法:① x2+y249;② xy2;③ x+y9;④ 2xy+449;其中說法正確的是( 。

A. ①②B. ①②④

C. ①②③D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019412日,安慶“筑夢號”自動駕駛公開試乘體驗(yàn)正式啟動,讓安慶成為全國率先開通自動駕駛的城市,智能、綠色出行的時(shí)代即將到來.普通燃油車從A地到B地,所需油費(fèi)108元,而自動駕駛的純電動車所需電費(fèi)27元,已知每行駛l千米,普通燃油汽車所需的油費(fèi)比自動的純電動汽車所需的電費(fèi)多0.54元,求自動駕駛的純電動汽車每行駛1千米所需的電費(fèi).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=2,BC=4P為邊AD上一動點(diǎn),連接BP,把ABP沿BP折疊,使A落在A′處,當(dāng)A′DC為等腰三角形時(shí),AP的長為(

A. 2B. C. 2D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】雷達(dá)二維平面定位的主要原理是:測量目標(biāo)的兩個(gè)信息距離和角度,目標(biāo)的表示方法為,其中,m表示目標(biāo)與探測器的距離;表示以正東為始邊,逆時(shí)針旋轉(zhuǎn)后的角度.如圖,雷達(dá)探測器顯示在點(diǎn)A,B,C處有目標(biāo)出現(xiàn),其中,目標(biāo)A的位置表示為目標(biāo)C的位置表示為.用這種方法表示目標(biāo)B的位置,正確的是(

A. (-4, 150°) B. (4, 150°) C. (-2, 150°) D. (2, 150°)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】母親節(jié)快到了,七(1)班班委發(fā)起慰問烈士家屬王大媽和李大媽的活動,決定在母親節(jié)期間全班同學(xué)利用課余時(shí)間去賣鮮花籌集資金.已知同學(xué)們從花店按每枝1.4元買進(jìn)鮮花,并按每枝3元賣出,設(shè)賣出鮮花x枝.

品名

熱水壺

電飯煲

單價(jià)(單位:元/)

125

250

1)每賣出一枝鮮花賺_______元,賣出鮮花x枝賺______元;

2)若從花店購買鮮花的同時(shí),同學(xué)們還花了50元購買包裝材料,請把所籌集的資金y(元)用鮮花的銷售量x(枝)的代數(shù)式表示;現(xiàn)在籌集的資金為750元,問需要賣出鮮花多少枝?

3)已知兩種家用小電器的單價(jià)如下表所示,現(xiàn)將籌集的750元全部用于購買表中家用小電器贈送兩位大媽,且電飯煲至少要購買1只,請求出所有的購買方案.

查看答案和解析>>

同步練習(xí)冊答案