【題目】如圖,在矩形ABCD中,AC、BD相交于O,AE平分∠BAD,交BCE,若∠CAE=15°,求∠BOE的度數(shù).

【答案】75°

【解析】試題分析:根據(jù)矩形的性質和角平分線的定義可得∠BAE=45°,再由∠CAE=15°,可求得∠BAOE=60°,可判定AOB為等邊三角形,即可得OB=AB,再證得AB=BE,即可得OB=BE,從而求得∠BOE的度數(shù).

試題解析:

解:在矩形ABCD中,∵AE平分∠BAD,

∴∠BAE=45°

又∵∠CAE=15°

∴∠BAO=BAE+CAE=60°,

AOB為等邊三角形,

OB=AB,ABO=60°,

∴∠OBE=ABCABO=90°-60°=30°

∵∠BAE=45°,BEA=45°,

AB=BE,OB=BE

∴∠BOE=75°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,現(xiàn)有5張寫著不同數(shù)字的卡片,請按要求完成下列問題:

若從中取出2張卡片,使這2張卡片上數(shù)字的乘積最大,則乘積的最大值是______

若從中取出2張卡片,使這2張卡片上數(shù)字相除的商最小,則商的最小值是______

若從中取出4張卡片,請運用所學的計算方法,寫出兩個不同的運算式,使四個數(shù)字的計算結果為24

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,點D是邊BC上的點(B,C兩點不重合),過點DDEAC,DFAB,分別交AB,ACE,F(xiàn)兩點,下列說法正確的是( )

A. ADBC,則四邊形AEDF是矩形 B. BD=CD,則四邊形AEDF是菱形

C. AD垂直平分BC,則四邊形AEDF是矩形 D. AD平分∠BAC,則四邊形AEDF是菱形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,△ABC的三個頂點都在格點上,點A的坐標為(2,2)請解答下列問題:

(1)畫出△ABC關于y軸對稱的△A1B1C1 , 并寫出A1的坐標.
(2)畫出△ABC繞點B逆時針旋轉90°后得到的△A2B2C2 , 并寫出A2的坐標.
(3)畫出△A2B2C2關于原點O成中心對稱的△A3B3C3 , 并寫出A3的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中有一邊長為l的正方形OABC,邊OA、OC分別在x軸、y軸上,如果以對角線OB為邊作第二個正方形OBB1C1,再以對角線OBl為邊作第三個正方形OBlB2C2,照此規(guī)律作下去,則點B2020的坐標為__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知AB是圓O的直徑,圓O過BC的中點D,且DE⊥AC.

(1)求證:DE是圓O的切線;
(2)若∠C=30°,CD=10cm,求圓O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們規(guī)定:橫、縱坐標相等的點叫做完美點”.

(1)若點A(x,y)完美點,且滿足x+y=4,求點A的坐標;

(2)如圖1,在平面直角坐標系中,四邊形OABC是正方形,點A坐標為(0,4),連接OB,E點從OB運動,速度為2個單位/秒,到B點時運動停止,設運動時間為t.

①不管t為何值,E點總是完美點”;

②如圖2,連接AE,過E點作PQx軸分別交AB、OCP、Q兩點,過點EEFAEx軸于點F,問:當E點運動時,四邊形AFQP的面積是否發(fā)生變化?若不改變,求出面積的值;若改變,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在“書香包河”讀書活動中,學校準備購買一批課外讀物,為使課外讀物滿足學生們的需求,學校就“我最喜愛的課外讀物”從文學、藝術、科普和其他四個類別進行了抽樣調查(每位同學只選一類),如圖是根據(jù)調查結果繪制的兩幅不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

(1)本次調查中,一共調查了______________名同學;

(2)條形統(tǒng)計圖中,m=_________,n=__________;

(3)扇形統(tǒng)計圖中,藝術類讀物所在扇形的圓心角是多少度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料:

a 2 ≥0”這個結論在數(shù)學中非常有用,有時我們需要將代數(shù)式配成完全平方式.例如:

x2 4x 5 x2 4x 4 1 x 22 1

x 22 ≥0

x 22 1 ≥1,

x2 4x 5 ≥1.

試利用配方法解決下列問題:

(1)填空: x2 4x 5 ( x )2 ;

(2)已知 x2 4x y2 2y 5 0 ,求 x y 的值;

(3)比較代數(shù)式 x2 12x 3 的大。

查看答案和解析>>

同步練習冊答案