【題目】如圖,⊙O的半徑為2,弦BC=2,點(diǎn)A是優(yōu)弧BC上一動(dòng)點(diǎn)(不包括端點(diǎn)),△ABC的高BD、CE相交于點(diǎn)F,連結(jié)ED.下列四個(gè)結(jié)論:
①∠A始終為60°;
②當(dāng)∠ABC=45°時(shí),AE=EF;
③當(dāng)△ABC為銳角三角形時(shí),ED=;
④線段ED的垂直平分線必平分弦BC.
其中正確的結(jié)論是_____.(把你認(rèn)為正確結(jié)論的序號(hào)都填上)
【答案】①②③④
【解析】分析:①延長(zhǎng)CO交⊙O于點(diǎn)G,如圖1.在Rt△BGC中,運(yùn)用三角函數(shù)就可解決問(wèn)題;②只需證到△BEF≌△CEA即可;③易證△AEC∽△ADB,則,從而可證到△AED∽△ACB,則有.由∠A=60°可得到,進(jìn)而可得到ED=;④取BC中點(diǎn)H,連接EH、DH,根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得EH=DH=BC,所以線段ED的垂直平分線必平分弦BC.
詳解:①延長(zhǎng)CO交⊙O于點(diǎn)G,如圖1.
則有∠BGC=∠BAC.
∵CG為⊙O的直徑,∴∠CBG=90°.
∴sin∠BGC=.
∴∠BGC=60°.
∴∠BAC=60°.
故①正確.
②如圖2,
∵∠ABC=45°,CE⊥AB,即∠BEC=90°,
∴∠ECB=45°=∠EBC.
∴EB=EC.
∵CE⊥AB,BD⊥AC,
∴∠BEC=∠BDC=90°.
∴∠EBF+∠EFB=90°,∠DFC+∠DCF=90°.
∵∠EFB=∠DFC,∴∠EBF=∠DCF.
在△BEF和△CEA中,
,
∴△BEF≌△CEA.
∴AE=EF.
故②正確.
③如圖3,
∵∠AEC=∠ADB=90°,∠A=∠A,
∴△AEC∽△ADB.
∴.
∵∠A=∠A,
∴△AED∽△ACB.
∴.
∵cosA==cos60°=,
∴.
∴ED=BC=.
故③正確.
④取BC中點(diǎn)H,連接EH、DH,如圖3、圖4.
∵∠BEC=∠CDB=90°,點(diǎn)H為BC的中點(diǎn),
∴EH=DH=BC.
∴點(diǎn)H在線段DE的垂直平分線上,
即線段ED的垂直平分線平分弦BC.
故④正確.
故答案為:①②③④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校組織340名師生進(jìn)行長(zhǎng)途考察活動(dòng),帶有行李170件,計(jì)劃租用甲、乙兩種型號(hào)的汽車共10輛.經(jīng)了解,甲車每輛最多能載40人和16件行李,乙車每輛最多能載30人和20件行李.
(1)請(qǐng)你幫助學(xué)校設(shè)計(jì)所有可行的租車方案.
(2)如果甲車的租金為每輛2 000元,乙車的租金為每輛1 800元,問(wèn)哪種可行方案使租車費(fèi)用最?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(8,1),B(0,﹣3),反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)點(diǎn)A,動(dòng)直線x=t(0<t<8)與反比例函數(shù)的圖象交于點(diǎn)M,與直線AB交于點(diǎn)N.
(1)k的值是______;
(2)當(dāng)t=4時(shí),求△BMN面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠D=∠C=90°,E是DC的中點(diǎn),AE平分∠DAB,∠DEA=28°,則∠ABE的度數(shù)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB∥CD,C在D的右側(cè),BE平分∠ABC,DE平分∠ADC,BE、DE所在直線交于點(diǎn)E.∠ADC =68°.
(1)求∠EDC的度數(shù);
(2)若∠ABC =n°,求∠BED的度數(shù)(用含n的代數(shù)式表示);
(3)將線段BC沿DC方向平移, 使得點(diǎn)B在點(diǎn)A的右側(cè),其他條件不變,畫(huà)出圖形并判斷∠BED的度數(shù)是否改變,若改變,求出它的度數(shù)(用含n的式子表示),不改變,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將兩塊直角三角形紙板如圖①擺放,,現(xiàn)將繞點(diǎn)逆時(shí)針轉(zhuǎn)動(dòng);
當(dāng)轉(zhuǎn)動(dòng)至圖②位置時(shí),若,且平分平分,則 _;
當(dāng)轉(zhuǎn)動(dòng)至圖③位置時(shí),平分平分,求的度數(shù);
當(dāng)轉(zhuǎn)動(dòng)至圖④位置時(shí),平分平分,請(qǐng)直接寫(xiě)出的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】依據(jù)國(guó)家實(shí)行的《國(guó)家學(xué)生體質(zhì)健康標(biāo)準(zhǔn)》,對(duì)懷柔區(qū)初一學(xué)生身高進(jìn)行抽樣調(diào)查,以便總結(jié)懷柔區(qū)初一學(xué)生現(xiàn)存的身高問(wèn)題,分析其影響因素,為學(xué)生的健康發(fā)展及學(xué)校體育教育改革提出合理項(xiàng)建議.已知懷柔區(qū)初一學(xué)生有男生840人,女生800人,他們的身高在150≤x<175范圍內(nèi),隨機(jī)抽取初一學(xué)生進(jìn)行抽樣調(diào)查.抽取的樣本中,男生比女生多2人,利用所得數(shù)據(jù)繪制如下統(tǒng)計(jì)圖表:
根據(jù)統(tǒng)計(jì)圖表提供的信息,下列說(shuō)法中
①抽取男生的樣本中,身高在155≤x<165之間的學(xué)生有18人;
②初一學(xué)生中女生的身高的中位數(shù)在B組;
③抽取的樣本中,抽取女生的樣本容量是38;
④初一學(xué)生身高在160≤x<170之間的學(xué)生約有800人.
其中合理的是
A. ①② B. ①④ C. ②④ D. ③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線y=kx+b(k≠0)與雙曲線相交于A,B兩點(diǎn),A點(diǎn)坐標(biāo)為(-3,2),B點(diǎn)坐標(biāo)為(n,-3).
(1)求一次函數(shù)和反比例函數(shù)表達(dá)式;
(2)如果點(diǎn)P是x軸上一點(diǎn),且△ABP的面積是5,直接寫(xiě)出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了迎接第二屆“環(huán)泉州灣國(guó)際自行車賽”的到來(lái),泉州臺(tái)商投資區(qū)需要制作宣傳單.有兩個(gè)印刷廠前來(lái)聯(lián)系制作業(yè)務(wù),甲廠的優(yōu)惠條件是:按每份定價(jià)1.5元的八折收費(fèi),另收900元制版費(fèi);乙廠的優(yōu)惠條件是:每份定價(jià)1.5元的價(jià)格不變,而制版費(fèi)900元?jiǎng)t六折優(yōu)惠.且甲乙兩廠都規(guī)定:一次印刷數(shù)量至少是500份.
(1)若印刷數(shù)量為份(,且是整數(shù)),請(qǐng)你分別寫(xiě)出兩個(gè)印刷廠收費(fèi)的代數(shù)式;
(2)如果比賽宣傳單需要印刷1100份,應(yīng)選擇哪個(gè)廠家?為什么?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com