已知:如圖,平行四邊形ABCD兩條對(duì)角線AC、BD相交于點(diǎn)O,過O作一直線分別交AD、BC于點(diǎn)M、N,
求證:OM=ON.
分析:根據(jù)平行四邊形的對(duì)角線互相平分可得OA=OC,再根據(jù)平行四邊形的對(duì)邊平行可得AD∥BC,利用兩直線平行,內(nèi)錯(cuò)角相等可得∠MAO=∠NCO,然后利用“角邊角”證明△AMO和△CNO全等,根據(jù)全等三角形對(duì)應(yīng)邊相等即可得證.
解答:證明:平行四邊形ABCD中,OA=OC,AD∥BC,
∴∠MAO=∠NCO,
在△AMO和△CNO中,
∠MAO=∠NCO
OA=OC
∠AOM=∠CON(對(duì)頂角相等)
,
∴△AMO≌△CNO(ASA),
∴OM=ON.
點(diǎn)評(píng):本題考查了平行四邊形的對(duì)角線互相平分,對(duì)邊平行的性質(zhì),全等三角形的判定與性質(zhì),比較簡(jiǎn)單.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分6分)已知:如圖,E、F是平行四邊行ABCD的對(duì)角線AC上的兩點(diǎn),AE=CF。

求證:(1)△ADF≌△CBE;(2)EB∥DF。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分6分)已知:如圖,E、F是平行四邊行ABCD的對(duì)角線AC上的兩點(diǎn),AE=CF。

求證:(1)△ADF≌△CBE;(2)EB∥DF。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省江陰市夏港中學(xué)九年級(jí)第二學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

(本題滿分6分)已知:如圖,E、F是平行四邊行ABCD的對(duì)角線AC上的兩點(diǎn),AE=CF。

求證:(1)△ADF≌△CBE;(2)EB∥DF。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年山東省九年級(jí)上學(xué)期階段檢測(cè)數(shù)學(xué)卷(解析版) 題型:解答題

已知:如圖,E、F是平行四邊行ABCD的對(duì)角線AC上的兩點(diǎn),AE=CF。

求證:(1)△ADF≌△CBE;(2)EB∥DF。

【解析】要證△ADF≌△CBE,因?yàn)锳E=CF,則兩邊同時(shí)加上EF,得到AF=CE,又因?yàn)锳BCD是平行四邊形,得出AD=CB,∠DAF=∠BCE,從而根據(jù)SAS推出兩三角形全等,由全等可得到∠DFA=∠BEC,所以得到DF∥EB

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011屆江蘇省江陰市九年級(jí)第二學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

(本題滿分6分)已知:如圖,E、F是平行四邊行ABCD的對(duì)角線AC上的兩點(diǎn),AE=CF。

求證:(1)△ADF≌△CBE;(2)EB∥DF。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案