【題目】如圖,在ABC中,AB=AC=1,BC=,在AC邊上截取AD=BC,連接BD.

(1)通過計算,判斷AD2ACCD的大小關(guān)系;

(2)求∠ABD的度數(shù).

【答案】(1)AD2=ACCD.(2)36°.

【解析】試題分析:(1)通過計算得到=,再計算AC·CD,比較即可得到結(jié)論;

2)由,得到,即,從而得到△ABC∽△BDC,故有,從而得到BD=BC=AD,故∠A=∠ABD,∠ABC=∠C=∠BDC

設(shè)∠A=∠ABD=x,則∠BDC=2x,∠ABC=∠C=∠BDC=2x,由三角形內(nèi)角和等于180°,解得:x=36°,從而得到結(jié)論.

試題解析:(1∵AD=BC===

∵AC=1,∴CD==;

2,,即,又∵∠C=∠C,∴△ABC∽△BDC,,又∵AB=AC,∴BD=BC=AD,∴∠A=∠ABD,∠ABC=∠C=∠BDC

設(shè)∠A=∠ABD=x,則∠BDC=∠A+∠ABD=2x,∴∠ABC=∠C=∠BDC=2x∴∠A+∠ABC+∠C=x+2x+2x=180°,解得:x=36°∴∠ABD=36°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知RtAOB的兩直角邊OAOB分別在x軸、y軸的正半軸上(OAOB),且OA、OB的長分別是一元二次方程x2﹣14x+48=0的兩個根.線段AB的垂直平分線CDAB于點C,交x軸于點D,點P是直線CD上一個動點,點Q是直線AB上一個動點.

1)求A、B兩點的坐標(biāo);

2)求直線CD的解析式;

3)在坐標(biāo)平面內(nèi)是否存在點M,使以點C、PQ、M為頂點的四邊形是正方形,且該正方形的邊長為AB長?若存在,請直接寫出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=kx+7的圖像經(jīng)過點A(2,3)

(1)求k的值;

(2)判斷點B(-1,8),C(3,1)是否在這個函數(shù)的圖像上,并說明理由;

(3)當(dāng)-3<x<-1時,求y的取值范圍

【答案】(1)k=-2(2)點B不在,點C在,(3)9<y<13

【解析】

試題分析:(1)把點A(2,3)代入y=kx+7即可求出k的值;(2)點B(-1,8),C(3,1)的橫坐標(biāo)代入函數(shù)解析式驗證即可;(3)根據(jù)x的取值范圍,即可求出y的取值范圍

試題解析:(1)把點A(2,3)代入y=kx+7得:k=-2

(2)當(dāng)x=-1時,y=-2×(-1)+7=9

98點B不在拋物線上

當(dāng)x=3時,y=-2×3+7=1

點C在拋物線上

(3)當(dāng)x=-3時,y=13,當(dāng)x=-,1時,y=9,所以9<y<13

考點:一次函數(shù)

型】解答
結(jié)束】
24

【題目】順豐快遞公司派甲、乙兩車從A地將一批物品勻速運往B地,甲出發(fā)0.5h后乙開始出發(fā),結(jié)果比甲早1h)到達(dá)B地,如圖,線段OP、MN分別表示甲、乙兩車離A地的距離Skm)與時間th)的關(guān)系,a表示A、B兩地之間的距離.請結(jié)合圖中的信息解決如下問題:

1)分別計算甲、乙兩車的速度及a的值;

2)乙車到達(dá)B地后以原速立即返回,請問甲車到達(dá)B地后以多大的速度立即勻速返回,才能與乙車同時回到A地?并在圖中畫出甲、乙兩車在返回過程中離A地的距離Skm)與時間th)的函數(shù)圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點E,F分別是AB,CD上的點,點GBC的延長線上一點,且∠B=∠DCG=∠D,則下列判斷中,錯誤的是(   )

A. AEF=∠EFC B. A=∠BCF C. AEF=∠EBC D. BEF+∠EFC=180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,從①∠1=∠2 ②∠C=∠D ③∠A=∠F 三個條件中選出兩個作為已知條件,另一個作為結(jié)論所組成的命題中,正確命題的個數(shù)為( 。

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,E、F分別是邊AD、CD上的點,AE=ED,DF=DC,連接EF并延長交BC的延長線于點G。

(1)求證:ABE∽△DEF;

(2)若正方形的邊長為4,求BG的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y1kxb的圖像經(jīng)過點(0,-2),(2,2).

(1)求一次函數(shù)的表達(dá)式,并在所給直角坐標(biāo)系中畫出此函數(shù)的圖像;;

(2)根據(jù)圖像回答:當(dāng)x 時,y1=0;

(3)求直線y1kxb、直線y2=-2x+4與y軸圍成的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,E、F分別是邊AD、CD上的點,AE=ED,DF=DC,連接EF并延長交BC的延長線于點G。

(1)求證:ABE∽△DEF;

(2)若正方形的邊長為4,求BG的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,ABC中,AB=AC,BAC=90°,點D是直線AB上的一動點(不和AB重合),BECDE,交直線ACF.

1)點D在邊AB上時,試探究線段BD、ABAF的數(shù)量關(guān)系,并證明你的結(jié)論;

2)點DAB的延長線或反向延長線上時,(1)中的結(jié)論是否成立?若不成立,請直接寫出正確結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案