【題目】如圖,拋物線yax2+bxa≠0)與x軸交于原點(diǎn)及點(diǎn)A,且經(jīng)過點(diǎn)B4,8),對稱軸為直線x=﹣2,頂點(diǎn)為D

1)填空:拋物線的解析式為   ,頂點(diǎn)D的坐標(biāo)為   ,直線AB的解析式為   ;

2)在直線AB左側(cè)拋物線上存在點(diǎn)E,使得∠EBA=∠ABD,求E的坐標(biāo);

3)連接OB,點(diǎn)Px軸下方拋物線上一動點(diǎn),過點(diǎn)POB的平行線交直線AB于點(diǎn)Q,當(dāng)SPOQSBOQ12時,求出點(diǎn)P的坐標(biāo).

【答案】(1)yx2+x;(﹣2,﹣1);yx+4;(2)(﹣,);(3P(﹣2,22).

【解析】

1)根據(jù)對稱軸可求得A點(diǎn)坐標(biāo),再根據(jù)B點(diǎn)坐標(biāo),利用待定系數(shù)法即可求得拋物線以及一次函數(shù)解析式,再利用對稱軸為x=﹣2可求得拋物線頂點(diǎn)坐標(biāo);

2)證明四邊形GDHD′為正方形,點(diǎn)D-2,-1),則點(diǎn)G-5,-1),則正方形的邊長為3,則點(diǎn)D′-5,2),求得直線BD′的解析式,與拋物線聯(lián)立即可求解;

3)證明四邊形PQHO為平行四邊形,則xQ-xP=xH-xO,即可求解.

解:(1)對稱軸為直線x=﹣2,則點(diǎn)A(﹣4,0),

將點(diǎn)A、B的坐標(biāo)代入拋物線表達(dá)式得 ,解得

故拋物線的表達(dá)式為:yx2+x①,

當(dāng)x=-2時,

∴頂點(diǎn)D的坐標(biāo)為:(﹣2,﹣1),

設(shè)直線AB的表達(dá)式為,

將點(diǎn)AB的坐標(biāo)代入一次函數(shù)表達(dá)式,解得,

所以,直線AB的表達(dá)式為:yx+4…②,

故答案為:yx2+x;(﹣2,﹣1);yx+4

2)作點(diǎn)D關(guān)于AB的對稱點(diǎn)D,分別過點(diǎn)D、Dx軸的平行線交直線AB與點(diǎn)G、H,

,,

∵直線AB的解析式為yx+4,x軸,x,

,

,,

則四邊形GDHD為正方形,

根據(jù)點(diǎn)D(﹣2,﹣1),可得點(diǎn)G(﹣5,﹣1),

所以,正方形的邊長為3,

則點(diǎn)D(﹣5,2),

設(shè)直線BD的表達(dá)式為:,所以,解得,

所以,直線BD的表達(dá)式為:yx+③;

聯(lián)立①③并解得:x=﹣4(舍去),

故點(diǎn)E(﹣,);

3)取OB的中點(diǎn)H24),則SOQHSOBQ,而SPOQSBOQ12,

SOQHSPOQ

PQOH,故PQOH(四邊形PQHO為平行四邊形),

xQxPxHxO,

設(shè)點(diǎn)Pm, m2+m),

直線OB的表達(dá)式為:y2x,

則直線PQ的表達(dá)式為:y2x+b1,將點(diǎn)P的坐標(biāo)代入上式得,解得,

所以,直線PQ的表達(dá)式為:y2x+m2m④,

聯(lián)立②④并解得:xQ=﹣m2+m+4,

xQxPxHxO

即﹣m2+m+4m2,

解得:mm(舍去),

故點(diǎn)P(﹣222).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了創(chuàng)建書香校園,去年購買了一批圖書.其中科普書的單價比文學(xué)書的單價多8元,用1800元購買的科普書的數(shù)量與用l000元購買的文學(xué)書的數(shù)量相同.

1)求去年購買的文學(xué)書和科普書的單價各是多少元;

2)這所學(xué)校今年計劃再購買這兩種文學(xué)書和科普書共200本,且購買文學(xué)書和科普書的總費(fèi)用不超過2088元.今年文學(xué)書的單價比去年提高了20%,科普書的單價與去年相同,且每購買1本科普書就免費(fèi)贈送1本文學(xué)書,求這所學(xué)校今年至少要購買多少本科普書?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線軸和軸分別交于點(diǎn)和點(diǎn)拋物線經(jīng)過點(diǎn)與直線的另一個交點(diǎn)為

的值和拋物線的解析式

點(diǎn)在拋物線上,軸交直線于點(diǎn)點(diǎn)在直線上,且四邊形為矩形.設(shè)點(diǎn)的橫坐標(biāo)為矩形的周長為的函數(shù)關(guān)系式以及的最大值

繞平面內(nèi)某點(diǎn)逆時針旋轉(zhuǎn)得到(點(diǎn)分別與點(diǎn)對應(yīng)),若的兩個頂點(diǎn)恰好落在拋物線上,請直接寫出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】20191010日傍晚1810左右,江蘇省無錫市山區(qū)312國道上海方向K135處,錫港路上跨橋出現(xiàn)橋面?zhèn)确,造?/span>3人死亡,2人受傷,盡管該事故原因初步分析為半掛牽引車嚴(yán)重超載導(dǎo)致橋梁發(fā)生側(cè)翻,但是也引起了社會各界對橋梁設(shè)計安全性的擔(dān)憂,我市積極開展對橋梁結(jié)構(gòu)設(shè)計的安全性進(jìn)行評估(已知:抗傾覆系數(shù)越高,安全性越強(qiáng);當(dāng)抗傾覆系數(shù)≥25時,認(rèn)為該結(jié)構(gòu)安全),現(xiàn)在重慶市隨機(jī)抽取了甲、乙兩個設(shè)計院,對其各自在建的或已建的20座橋梁項(xiàng)目進(jìn)行排查,將得到的抗傾覆數(shù)據(jù)進(jìn)行整理、描述和分析(抗傾覆數(shù)據(jù)用x表示,共分成6組:A0x25,B25x50,C50x75D75x100,E100x125F125x15),下面給出了部分信息;

其中,甲設(shè)計院C組的抗傾覆系數(shù)是:7,7,7,6,7,7;

乙設(shè)計院D組的抗傾覆系數(shù)是:8,89,8,88;

甲、乙設(shè)計院分別被抽取的20座橋梁的抗傾覆系數(shù)統(tǒng)計表

設(shè)計院

平均數(shù)

7.7

8.9

眾數(shù)

a

8

中位數(shù)

7

b

方差

19.7

18.3

根據(jù)以上信息解答下列問題:

1)扇形統(tǒng)計圖中D組數(shù)據(jù)所對應(yīng)的圓心角是   度,a   ,b   ;

2)根據(jù)以上數(shù)據(jù),甲、乙兩個設(shè)計院中哪個設(shè)計院的橋梁安全性更高,說明理由(一條即可):   ;

3)據(jù)統(tǒng)計,2018年至2019年,甲設(shè)計院完成設(shè)計80座橋梁,乙設(shè)計院完成設(shè)計120座橋梁,請估算2018年至2019年兩設(shè)計院的不安全橋梁的總數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以矩形ABCD對角線AC為底邊作等腰直角△ACE,連接BE,分別交AD,AC于點(diǎn)F,N,CDAF,AM平分∠BAN.下列結(jié)論:①EFED;②∠BCM=∠NCM;③ACEM;④BN2+EF2EN2;⑤AEAMNEFM,其中正確結(jié)論的個數(shù)是(  )

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《孫子算經(jīng)》是中國傳統(tǒng)數(shù)學(xué)最重要的著作,約成書于四、五世紀(jì).現(xiàn)在傳本的《孫子算經(jīng)》共三卷.卷上敘述算籌記數(shù)的縱橫相間制度和籌算乘除法則;卷中舉例說明籌算分?jǐn)?shù)算法和籌算開平方法;卷下記錄算題,不但提供了答案,而且還給出了解法.其中記載:“今有木,不知長短.引繩度之,余繩四尺五,屈繩量之,不足一尺.問木長幾何?”

譯文:“用一根繩子去量一根長木,繩子還剩余4.5,將繩子對折再量長木,長木還剩余1,問長木長多少尺?”

請解答上述問題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種型號油電混合動力汽車,從A地到B地燃油行駛純?nèi)加唾M(fèi)用76元,從A地到B地用電行駛純電費(fèi)用26元,已知每行駛1千米,純?nèi)加唾M(fèi)用比純用電費(fèi)用多0.5元.

1求每行駛1千米純用電的費(fèi)用;

2若要使從A地到B地油電混合行駛所需的油、電費(fèi)用合計不超過39元,則至少用電行駛多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,、為河對岸的兩幢建筑物,某學(xué)習(xí)小組為了測出河寬(沿岸是平行的),先在岸邊的點(diǎn)處測得,再沿著河岸前進(jìn)10米后到達(dá)點(diǎn),在點(diǎn)處測得,

1)求河寬;

2)該小組發(fā)現(xiàn)此時還可求得、之間的距離,請求出的長.(精確到0.1米)(參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】全民健身運(yùn)動已成為一種時尚,為了了解我市居民健身運(yùn)動的情況,某健身館的工作人員開展了一項(xiàng)問卷調(diào)查,問卷包括五個項(xiàng)目:A:健身房運(yùn)動;B:跳廣場舞;C:參加暴走團(tuán);D:散布;E:不運(yùn)動.

以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計圖表的一部分.

運(yùn)動形式

A

B

C

D

E

人數(shù)

12

30

m

54

9

請你根據(jù)以上信息,回答下列問題:

1)接受問卷調(diào)查的共有   人,圖表中的m=   ,n=   ;

2)統(tǒng)計圖中,A類所對應(yīng)的扇形圓心角的度數(shù)為   ;

3)根據(jù)調(diào)查結(jié)果,我市市民最喜愛的運(yùn)動方式是   ,不運(yùn)動的市民所占的百分比是   ;

4)鄭州市碧沙崗公園是附近市民喜愛的運(yùn)動場所之一,每晚都有暴走團(tuán)活動,若最鄰近的某社區(qū)約有1500人,那么估計一下該社區(qū)參加碧沙崗暴走團(tuán)的大約有多少人?

查看答案和解析>>

同步練習(xí)冊答案