【題目】(12分)(1)如圖1,在平面直角坐標系中,四邊形OBCD是正方形,且D(0,2),點E是線段OB延長線上一點,M是線段OB上一動點(不包括點O、B),作MN⊥DM,垂足為M,且MN=DM.設OM=a,請你利用基本活動經驗直接寫出點N的坐標_____(用含a的代數式表示);
(2)如果(1)的條件去掉“且MN=DM”,加上“交∠CBE的平分線與點N”,如圖2,求證:MD=MN.如何突破這種定勢,獲得問題的解決,請你寫出你的證明過程.
(3)如圖3,請你繼續(xù)探索:連接DN交BC于點F,連接FM,下列兩個結論:①FM的長度不變;②MN平分∠FMB,請你指出正確的結論,并給出證明.
【答案】(1)N(2+a,a);(2)見解析;(3)見解析.
【解析】 (1)如圖1中,作NE⊥OB于E,只要證明△DMO≌△MNE,即可解決問題.
(2)如圖2中,在OD上取OH=OM,連接HM,只要證明△DHM≌△MBN即可.
(3)結論:MN平分∠FMB成立.如圖3中,在BO延長線上取OA=CF,過M作MP⊥DN于P,因為∠NMB+∠CDF=45°,所以只要證明∠FMN+∠CDF=45°即可解決問題.
解:(1)解:如圖1中,作NE⊥OB于E,
∵∠DMN=90°,
∴∠DMO+∠NME=90°,∠NME+∠MNE=90°,
∴∠DMO=∠MNE,
在△DMO和△MNE中,
,
∴△DMO≌△MNE,
∴ME=DO=2,NE=OM=a,
∴OE=OM+ME=2+a,
∴點N坐標(2+a,a),
故答案為N(2+a,a).
(2)證明:如圖2中,在OD上取OH=OM,連接HM,
∵OD=OB,OH=OM,
∴HD=MB,∠OHM=∠OMH,
∴∠DHM=180°﹣45°=135°,
∵NB平分∠CBE,
∴∠NBE=45°,
∴∠NBM=180°﹣45°=135°,
∴∠DHM=∠NBM,
∵∠DMN=90°,
∴∠DMO+∠NMB=90°,
∵∠HDM+∠DMO=90°,
∴∠HDM=∠NMB,
在△DHM和△MBN中,
,
∴△DHM≌△MBN(ASA),
∴DM=MN.
(3)結論:MN平分∠FMB成立.
證明:如圖3中,在BO延長線上取OA=CF,
在△AOD和△FCD中,
,
∴△DOA≌△DCF,
∴AD=DF,∠ADO=∠CDF,
∵∠MDN=45°,
∴∠CDF+∠ODM=45°,
∴∠ADO+∠ODM=45°,
∴∠ADM=∠FDM,
在△DMA和△DMF中,
,
∴△DMA≌△DMF,
∴∠DFM=∠DAM=∠DFC,
過M作MP⊥DN于P,則∠FMP=∠CDF,
由(2)可知∠NMF+∠FMP=∠PMN=45°,
∴∠NMB=∠MDH,∠MDO+∠CDF=45°,
∴∠NMB=∠NMF,即MN平分∠FMB.
“點睛”本題考查四邊形綜合題、全等三角形的判定和性質、等腰直角三角形的判定和性質,解題的關鍵是學會添加輔助線,構造全等三角形,記住一些基本圖形,可以使得我們在觀察新問題的時候很迅速地聯(lián)想,屬于中考壓軸題.
科目:初中數學 來源: 題型:
【題目】天塔是天津市的標志性建筑之一,某校數學興趣小組要測量天塔的高度,如圖,他們在點A處測得天塔最高點C的仰角為45°,再往天塔方向前進至點B處測得最高點C的仰角為54°,AB=112m,根據這個興趣小組測得的數據,計算天塔的高度CD(tan36°≈0.73,結果保留整數).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某電器超市銷售甲、乙兩種型號的電風扇,兩種型號的電風扇每臺進價與售價長期保持不變,表是近兩周的銷售情況:
銷售時段 | 銷售數量 | 銷售收入 | |
甲種型號 | 乙種型號 | ||
第一周 | 10臺 | 8臺 | 3200元 |
第二周 | 8臺 | 10臺 | 3100元 |
(1)求甲、乙兩種型號的電風扇的銷售單價;
(2)若甲型號電風扇每臺進價150元,乙型號電風扇每臺進價120元,現(xiàn)超市決定購進甲、乙兩種型號的電風扇共100臺,要使這100臺電風扇全部售完的總利潤不少于4200元,那么該超市應至少購進甲種電風扇多少臺?(利潤=售價﹣進價)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】作為世界文化遺產的長城,其總長大約為6700000m.將6700000用科學記數法表示為( 。
A. 6.7×105 B. 6.7×106 C. 0.67×107 D. 67×108
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了調查濱湖區(qū)八年級學生期末考試數學試卷答題情況,從全區(qū)的數學試卷中隨機抽取了10本沒拆封的試卷作為樣本,每本含試卷30份,這次抽樣調查的樣本容量是 .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com