【題目】如圖,在ABC中,∠ABC90°,ABBC,三角形的頂點在相互平行的三條直線l1,l2l3上,且l1,l2之間的距離為2,l2,l3之間的距離為3,BCl2D點.

1)求AB的長.

2)求sinBAD的值.

【答案】(1).(2

【解析】

1)作AH⊥直線l3HCN⊥直線l3N,由AAS可證:△ABH≌△BCN,結(jié)合勾股定理,即可求解;

2)根據(jù)正弦三角函數(shù)的定義,即可求解.

1)作AH⊥直線l3HCN⊥直線l3N,則AH3,CN5

∵∠AHB=∠ABC=∠CNB90°,

∴∠ABH+CBN90°,∠CBN+BCN90°,

∴∠ABH=∠BCN,

ABAC

∴△ABH≌△BCNAAS),

BHCN5

AB

2)∵l2l3,

∴∠BAD=∠ABH

sinBADsinABH

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】2020年初新冠肺炎疫情爆發(fā)以來,國內(nèi)經(jīng)濟--度被按下暫停鍵,如今隨著國內(nèi)疫情防控形勢持續(xù)向好,各地開始進人積極復工復產(chǎn)的新模式.某商家為降低疫情帶來的影響,刺激消費,吸引顧客,特此設計了一個游戲,其規(guī)則是:分別轉(zhuǎn)動如圖所示的兩個可以自由轉(zhuǎn)動的轉(zhuǎn)盤各一次,每次指針落在每一字母區(qū)域的機會均等(若指針恰好落在分界線上則重轉(zhuǎn)),當兩個轉(zhuǎn)盤的指針所指字母相同時,消費者就可以獲得一次八折優(yōu)惠價購買商品的機會.

1)用樹狀圖或列表的方法表示出游戲可能出現(xiàn)的所有結(jié)果;

2)若小亮參加一次游戲,則他能獲得八折優(yōu)惠價購買商品的概率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年年初,受新冠肺炎疫情的影響,人們對病毒的防范意識加強,市面上的洗手液也備受歡迎,小王計劃購進A型、B型、C型三種洗手液共50箱,其中B型洗手液數(shù)量不超過A型洗手液數(shù)量,且B型洗手液數(shù)量不少于C型洗手液數(shù)量的一半.已知A型洗手液每箱60元,B型洗手液每箱80元,C型洗手液每箱100元.在價格不變的條件下,小王實際購進A型洗手液是計劃的倍,C型洗手液購進了12箱,結(jié)果小王實際購進三種洗手液共35箱,且比原計劃少支付1240元,則小王實際購進B型洗手液_____箱.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長AB8E為平面內(nèi)一動點,且AE4FCD上一點,CF2,連接EF,ED,則2EF+ED的最小值為(  )

A.12B.12C.12D.10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,ABa,∠ABC60°,過點AAEBC,垂足為E,AFCD,垂足為F

1)連接EF,用等式表示線段EFEC的數(shù)量關系,并說明理由;

2)連接BF,過點AAKBF,垂足為K,求BK的長(用含a的代數(shù)式表示);

3)延長線段CBG,延長線段DCH,且BGCH,連接AG、GHAH

判斷△AGH的形狀,并說明理由;

a2,SADH3+),求sinGAB的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtACB中,∠C=90°AC=6,BC=8,半徑為1的⊙OAC,BC相切,當⊙O沿邊CB平移至與AB相切時,則⊙O平移的距離為(  )

A.3B.4C.5D.6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將立方體紙盒沿某些棱剪開,且使六個面連在一起,然后鋪平,可以得到其表面展開圖的平面圖形.

1)以下兩個方格圖中的陰影部分能表示立方體表面展開圖的是   (填AB).

2)在以下方格圖中,畫一個與(1)中呈現(xiàn)的陰影部分不相似(包括不全等)的立方體表面展開圖.(用陰影表示)

3)如圖中的實線是立方體紙盒的剪裁線,請將其表面展開圖畫在右圖的方格圖中.(用陰影表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在五一假期間參加一項社會調(diào)查活動,在他所居住小區(qū)的600個家庭中,隨機調(diào)查了50個家庭人均月收入情況,并繪制了如下的頻數(shù)分布表和頻數(shù)分布直方圖(收入取整數(shù),單位:元).

數(shù)

10001200

3

0.060

12001400

12

0.240

14001600

18

0.360

16001800

0.200

18002000

5

20002200

2

0.040

合計

50

1.000

請你根據(jù)以上提供的信息,解答下列問題:

補全頻數(shù)分布表和頻數(shù)分布直方圖;

50個家庭人均月收入的中位數(shù)落在 小組;

請你估算該小區(qū)600個家庭中人均月收入較低(不足1400元)的家庭個數(shù)大約有多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某汽車租貿(mào)公司共有汽車50輛,市場調(diào)查表明,當租金為每輛每日200元時可全部租出,當租金每提高10元,租出去的車就減少2輛.

1)當租金提高多少元時,公司的每日收益可達到10120元?

2)公司領導希望日收益達到10160元,你認為能否實現(xiàn)?若能,求出此時的租金,若不能,請說明理由,

3)汽車日常維護要定費用,已知外租車輛每日維護費為100元未租出的車輛維護費為50元,當租金為多少元時,公司的利潤恰好為5500元?(利潤=收益﹣維護費)

查看答案和解析>>

同步練習冊答案