【題目】在平面直角坐標(biāo)系xOy中,對(duì)于點(diǎn)Px,y),如果點(diǎn)Qx,y)的縱坐標(biāo)滿足y,那么稱點(diǎn)Q為點(diǎn)P關(guān)聯(lián)點(diǎn)

1)請(qǐng)直接寫出點(diǎn)(3,5)的關(guān)聯(lián)點(diǎn)的坐標(biāo)   ;

2)如果點(diǎn)P在函數(shù)yx2的圖象上,其關(guān)聯(lián)點(diǎn)Q與點(diǎn)P重合,求點(diǎn)P的坐標(biāo);

3)如果點(diǎn)Mm,n)的關(guān)聯(lián)點(diǎn)N在函數(shù)y2x2的圖象上,當(dāng)0≤m≤2時(shí),求線段MN的最大值.

【答案】1)(3,2);(2)(4,2);(3)當(dāng)mn時(shí),線段MN的最大值是14;當(dāng)mn時(shí),線段MN的最大值是2

【解析】

1)根據(jù)關(guān)聯(lián)點(diǎn)的定義,可得答案;

2)根據(jù)關(guān)聯(lián)點(diǎn)的定義,可得Q點(diǎn)的坐標(biāo),根據(jù)點(diǎn)在函數(shù)圖象上,可得方程,根據(jù)解方程,可得答案;

3)根據(jù)關(guān)聯(lián)點(diǎn)的定義,可得N的坐標(biāo),根據(jù)平行于y軸的直線上兩點(diǎn)間的距離,可得二次函數(shù),根據(jù)二次函數(shù)的性質(zhì),可得答案.

解:(1)∵35,根據(jù)關(guān)聯(lián)點(diǎn)的定義,y′532,

∴點(diǎn)(35)的關(guān)聯(lián)點(diǎn)的坐標(biāo)(3,2),

故答案為:(3,2);

2)∵點(diǎn)P在函數(shù)yx2的圖象上,

∴點(diǎn)P的坐標(biāo)為(xx2).

xx2,根據(jù)關(guān)聯(lián)點(diǎn)的定義,點(diǎn)Q的坐標(biāo)為(x,2).

又∵點(diǎn)P與點(diǎn)Q重合,

x22,解得x4,

∴點(diǎn)P的坐標(biāo)是(4,2);

3)點(diǎn)Mm,n)的關(guān)聯(lián)點(diǎn)”N,由關(guān)聯(lián)點(diǎn)的定義,得

第一種情況:當(dāng)m≥n時(shí),點(diǎn)N的坐標(biāo)為(m,mn),

N在函數(shù)y2x2的圖象上,

mn2m2,n=﹣2m2+m,即yM=﹣2m2+myN2m2,

MN|yMyN||4m2+m|

①當(dāng)0≤m≤,﹣4m2+m≥0

MN=﹣4m2+m=﹣4m2+,

∴當(dāng)m時(shí),線段MN的最大值是;

②當(dāng)m≤2時(shí),﹣4m2+m0,

MN4m2m4m2,當(dāng)m2時(shí),線段MN的最大值是14;

第二種情況:當(dāng)mn時(shí),點(diǎn)N的坐標(biāo)為(mnm),

N在函數(shù)y2x2的圖象上,

nm2m2,即n2m2+m

yM2m2+m,yN2m2,

MN|yMyN||m|,

0≤m≤2

MNm,

∴當(dāng)m2時(shí),線段MN的最大值是2;

綜上所述:當(dāng)m≥n時(shí),線段MN的最大值是14;當(dāng)mn時(shí),線段MN的最大值是2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線軸交于,兩點(diǎn),點(diǎn)在點(diǎn)的左側(cè),拋物線的頂點(diǎn)為,規(guī)定:拋物線與軸圍成的封閉區(qū)域稱為區(qū)域”(不包含邊界)

(1)如果該拋物線經(jīng)過(guò)(1,3),求的值,并指出此時(shí)區(qū)域_____個(gè)整數(shù)點(diǎn);(整數(shù)點(diǎn)就是橫縱坐標(biāo)均為整數(shù)的點(diǎn))

(2)求拋物線的頂點(diǎn)的坐標(biāo)(用含的代數(shù)式表示)

(3)(2)的條件下,如果區(qū)域中僅有4個(gè)整數(shù)點(diǎn)時(shí),直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一盞路燈沿?zé)粽诌吘壣涑龅墓饩與地面BC交于點(diǎn)B、C,測(cè)得∠ABC45°,∠ACB30°,且BC20米.

1)請(qǐng)用圓規(guī)和直尺畫出路燈A到地面BC的距離AD;(不要求寫出畫法,但要保留作圖痕跡)

2)求出路燈A離地面的高度AD.(精確到0.1米)(參考數(shù)據(jù):≈1.414,≈1.732).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面是經(jīng)過(guò)已知直線外一點(diǎn)作這條直線的平行線的尺規(guī)作圖過(guò)程.已知:如圖1,直線l和直線l外一點(diǎn)P.求作:直線l的平行直線,使它經(jīng)過(guò)點(diǎn)P.作法:如圖2.(1)過(guò)點(diǎn)P作直線m與直線l交于點(diǎn)O;(2)在直線m上取一點(diǎn),以點(diǎn)O為圓心,OA長(zhǎng)為半徑畫弧,與直線l交于點(diǎn)B;(3)以點(diǎn)P為圓心,OA長(zhǎng)為半徑畫弧,交直線m于點(diǎn)C,以點(diǎn)C為圓心,AB長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)D;(4)作直線PD.所以直線PD就是所求作的平行線.請(qǐng)回答:該作圖的依據(jù)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖為某區(qū)域部分交通線路圖,其中直線,直線與直線、都垂直,垂足分別點(diǎn)、點(diǎn)和點(diǎn),(高速路右側(cè)邊緣),上的點(diǎn)位于點(diǎn)的北偏東方向上,且千米,上的點(diǎn)位于點(diǎn)的北偏東方向上,且,千米.點(diǎn)和點(diǎn)是城際線上的兩個(gè)相鄰的站點(diǎn).

1)求之間的距離;

2)若城際火車平均時(shí)速為千米/小吋,求市民小強(qiáng)乘坐城際火車從站點(diǎn)到站點(diǎn)需要多少小時(shí)?(結(jié)果用分?jǐn)?shù)表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面的材料:

2014年,是全面深化改革的起步之年,是實(shí)施十二五規(guī)劃的攻堅(jiān)之年,房山區(qū)經(jīng)濟(jì)發(fā)展穩(wěn)中有升、社會(huì)局面和諧穩(wěn)定,年初確定的主要任務(wù)目標(biāo)圓滿完成:全年地區(qū)生產(chǎn)總值和固定資產(chǎn)投資分別為530505億元;區(qū)域稅收完成202.8億;城鄉(xiāng)居民人均可支配收入分別達(dá)到3.6萬(wàn)元和1.9萬(wàn)元.

2015年,我區(qū)較好實(shí)現(xiàn)了十二五時(shí)期經(jīng)濟(jì)社會(huì)發(fā)展目標(biāo),開(kāi)啟了房山轉(zhuǎn)型發(fā)展的新航程:全年地區(qū)生產(chǎn)總值比上年增長(zhǎng)7%左右;固定資產(chǎn)投資完成530億元;區(qū)域稅收完成247億元;公共財(cái)政預(yù)算收入完成50.02億元;城鄉(xiāng)居民人均可支配收入分別增長(zhǎng)8%10%

2016年,發(fā)展路徑不斷完善,房山區(qū)全年地區(qū)生產(chǎn)總值完成595億元,固定資產(chǎn)投資完成535億元,超額實(shí)現(xiàn)預(yù)期目標(biāo),區(qū)域稅收比上一年增長(zhǎng)4.94億元,城鄉(xiāng)居民可支配收入分別增長(zhǎng)8.1%8.8%

(摘自《房山區(qū)政府工作報(bào)告》)

根據(jù)以上材料解答下列問(wèn)題:

(1)2015年,我區(qū)全年地區(qū)生產(chǎn)總值為______億元.

(2)選擇統(tǒng)計(jì)圖或統(tǒng)計(jì)表,將我區(qū)20142016年全年地區(qū)生產(chǎn)總值、固定資產(chǎn)投資和區(qū)域稅收表示出來(lái).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公園的人工湖邊上有一座假山,假山頂上有一豎起的建筑物CD,高為10米,數(shù)學(xué)小組為了測(cè)量假山的高度DE,在公園找了一水平地面,在A處測(cè)得建筑物點(diǎn)D(即山頂)的仰角為35°,沿水平方向前進(jìn)20米到達(dá)B點(diǎn),測(cè)得建筑物頂部C點(diǎn)的仰角為45°,求假山的高度DE.(結(jié)果精確到1米,參考數(shù)據(jù):sin35°≈,cos35°≈,tan35°≈

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC,以AB為直徑的O分別交BCAC于點(diǎn)D,E,連結(jié)EB,交OD于點(diǎn)F

1)求證:ODBE

2)若DE=AB=6,求AE的長(zhǎng).

3)若CDE的面積是OBF面積的,求線段BCAC長(zhǎng)度之間的等量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy,直線y=2x+l與雙曲線y=的一個(gè)交點(diǎn)為Am-3).

1求雙曲線的表達(dá)式;

2過(guò)動(dòng)點(diǎn)Pn,0)(n0且垂直于x軸的直線與直線y=2x+l和雙曲線y=的交點(diǎn)分別為B,C,當(dāng)點(diǎn)B位于點(diǎn)C上方時(shí)直接寫出n的取值范圍

查看答案和解析>>

同步練習(xí)冊(cè)答案