如圖,在△ABC中,AC=BC=2,∠ACB=90°,D是BC邊的中點(diǎn),E是AB邊上一動(dòng)點(diǎn),則EC+ED的最小值是   
【答案】分析:首先確定DC′=DE+EC′=DE+CE的值最。缓蟾鶕(jù)勾股定理計(jì)算.
解答:解:過(guò)點(diǎn)C作CO⊥AB于O,延長(zhǎng)CO到C′,使OC′=OC,連接DC′,交AB于E,連接CE,
此時(shí)DE+CE=DE+EC′=DC′的值最。
連接BC′,由對(duì)稱性可知∠C′BE=∠CBE=45°,
∴∠CBC′=90°,
∴BC′⊥BC,∠BCC′=∠BC′C=45°,
∴BC=BC′=2,
∵D是BC邊的中點(diǎn),
∴BD=1,
根據(jù)勾股定理可得DC′==
故答案為:
點(diǎn)評(píng):此題考查了線路最短的問(wèn)題,確定動(dòng)點(diǎn)E何位置時(shí),使EC+ED的值最小是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫(huà)出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫(huà)出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案