【題目】一次函數(shù)y=ax+b(a≠0)與二次函數(shù)ax2+2x+b(a≠0)在同一直角坐標(biāo)系中的圖象可能是( )
A.
B.
C.
D.
【答案】D
【解析】解:A、由拋物線可知,a>0,得b>0,由直線可知,a<0,b>0,故本選項(xiàng)錯(cuò)誤; B、由拋物線可知,a<0,b>0,由直線可知,a>0,b<0,故本選項(xiàng)錯(cuò)誤;
C、由拋物線可知,a<0,b>0,由直線可知,a<0,b<0,故本選項(xiàng)錯(cuò)誤;
D、由拋物線可知,a>0,b>0,由直線可知,a>0,b>0,且交y軸同一點(diǎn),故本選項(xiàng)正確.
故選D.
【考點(diǎn)精析】本題主要考查了一次函數(shù)的圖象和性質(zhì)和二次函數(shù)的圖象的相關(guān)知識(shí)點(diǎn),需要掌握一次函數(shù)是直線,圖像經(jīng)過(guò)仨象限;正比例函數(shù)更簡(jiǎn)單,經(jīng)過(guò)原點(diǎn)一直線;兩個(gè)系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來(lái)相見(jiàn),k為正來(lái)右上斜,x增減y增減;k為負(fù)來(lái)左下展,變化規(guī)律正相反;k的絕對(duì)值越大,線離橫軸就越遠(yuǎn);二次函數(shù)圖像關(guān)鍵點(diǎn):1、開(kāi)口方向2、對(duì)稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn)才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,輪船在A處觀測(cè)燈塔C位于北偏西70°方向上,輪船從A處以每小時(shí)20海里的速度沿南偏西50°方向勻速航行,1小時(shí)后到達(dá)碼頭B處,此時(shí),觀測(cè)燈塔C位于北偏西25°方向上,則燈塔C與碼頭B的距離是( )
A.10 海里
B.10 海里
C.10 海里
D.20 海里
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知Rt△ABC中,∠ACB=90°,∠B=15°,邊AB的垂直平分線交邊BC于點(diǎn)E,垂足為點(diǎn)D,取線段BE的中點(diǎn)F,聯(lián)結(jié)DF.求證:AC=DF.(說(shuō)明:此題的證明過(guò)程需要批注理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探究題
【問(wèn)題提出】
已知任意三角形的兩邊及夾角(是銳角),求三角形的面積.
【問(wèn)題探究】
為了解決上述問(wèn)題,讓我們從特殊到一般展開(kāi)探究.
探究:在Rt△ABC(圖1)中,∠ABC=90°,AC=b,BC=a,∠C=α,求△ABC的面積(用含a、b、α的代數(shù)式表示)
在Rt△ABC中,∠ABC=90°
∴sinα=
∴AB=bsinα
∴S△ABC= BCAB= absinα
(1)探究一:
銳角△ABC(圖2)中,AC=b,BC=a,∠C=α(0°<α<90°)
求:△ABC的面積.(用含a、b、α的代數(shù)式表示)
(2)探究二:
鈍角△ABC(圖3)中,AC=b,BC=a,∠C=α(0°<α<90°)
求:△ABC的面積.(用含a、b、α的代數(shù)式表示)
(3)【問(wèn)題解決】
用文字?jǐn)⑹觯阂阎我馊切蔚膬蛇吋皧A角(是銳角),求三角形面積的方法
是
(4)已知平行四邊形ABCD(圖4)中,AB=b,BC=a,∠B=α(0°<α<90°)
求:平行四邊形ABCD的面積.(用含a、b、α的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某商場(chǎng)有甲、乙兩種商品,甲種每件進(jìn)價(jià)15元,售價(jià)20元;乙種每件進(jìn)價(jià)35元,售價(jià)45元.
(1)若商家同時(shí)購(gòu)進(jìn)甲、乙兩種商品100件,設(shè)甲商品購(gòu)進(jìn)x件,售完此兩種商品總利潤(rùn)為y 元.寫(xiě)出y與x的函數(shù)關(guān)系式.
(2)該商家計(jì)劃最多投入3000元用于購(gòu)進(jìn)此兩種商品共100件,則至少要購(gòu)進(jìn)多少件甲種商品?若售完這些商品,商家可獲得的最大利潤(rùn)是多少元?
(3)“五一”期間,商家對(duì)甲、乙兩種商品進(jìn)行表中的優(yōu)惠活動(dòng),小王到該商場(chǎng)一次性付款324元購(gòu)買此類商品,商家可獲得的最小利潤(rùn)和最大利潤(rùn)各是多少?
打折前一次性購(gòu)物總金額 | 優(yōu)惠措施 |
不超過(guò)400元 | 售價(jià)打九折 |
超過(guò)400元 | 售價(jià)打八折 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABDC中,∠D=∠B=90°,點(diǎn)O為BD的中點(diǎn),且AO平分∠BAC.
(1)求證:CO平分∠ACD;
(2)求證:OA⊥OC;
(3)求證:AB+CD=AC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探究題
問(wèn)題再現(xiàn):
數(shù)形結(jié)合是解決數(shù)學(xué)問(wèn)題的一種重要的思想方法,借助這種方法可將抽象的數(shù)學(xué)知識(shí)變得直觀起來(lái)并且具有可操作性,從而可以幫助我們快速解題.初中數(shù)學(xué)里的一些代數(shù)公式,很多都可以通過(guò)表示幾何圖形面積的方法進(jìn)行直觀推導(dǎo)和解釋.
例如:利用圖形的幾何意義證明完全平方公式.
證明:將一個(gè)邊長(zhǎng)為a的正方形的邊長(zhǎng)增加b,形成兩個(gè)矩形和兩個(gè)正方形,如圖1:
這個(gè)圖形的面積可以表示成:
(a+b)2或a2+2ab+b2
∴(a+b)2 =a2+2ab+b2
這就驗(yàn)證了兩數(shù)和的完全平方公式.
(1)類比解決:
請(qǐng)你類比上述方法,利用圖形的幾何意義證明平方差公式.(要求畫(huà)出圖形并寫(xiě)出推理過(guò)程)
(2)問(wèn)題提出:如何利用圖形幾何意義的方法證明:13+23=32?
如圖2,
A表示1個(gè)1×1的正方形,即:1×1×1=13
B表示1個(gè)2×2的正方形,C與D恰好可以拼成1個(gè)2×2的正方形,因此:B、C、D就可以表示2個(gè)2×2的正方形,即:2×2×2=23
而A、B、C、D恰好可以拼成一個(gè)(1+2)×(1+2)的大正方形.
由此可得:13+23=(1+2)2=32
嘗試解決:
請(qǐng)你類比上述推導(dǎo)過(guò)程,利用圖形的幾何意義確定:13+23+33= . (要求寫(xiě)出結(jié)論并構(gòu)造圖形寫(xiě)出推證過(guò)程).
(3)問(wèn)題拓廣:
請(qǐng)用上面的表示幾何圖形面積的方法探究:13+23+33+…+n3= . (直接寫(xiě)出結(jié)論即可,不必寫(xiě)出解題過(guò)程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,BD垂直平分AC,垂足為點(diǎn)F,E為四邊形ABCD外一點(diǎn),且∠ADE=∠BAD,AE⊥AC.
(1)求證:四邊形ABDE是平行四邊形;
(2)如果DA平分∠BDE,AB=5,AD=6,求AC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com