【題目】如圖,拋物線y1= (x+1)2+1與y2=a(x﹣4)2﹣3交于點A(1,3),過點A作x軸的平行線,分別交兩條拋物線于B、C兩點,且D、E分別為頂點.則下列結(jié)論: ①a= ;②AC=AE;③△ABD是等腰直角三角形;④當(dāng)x>1時,y1>y2
其中正確結(jié)論的個數(shù)是(

A.1個
B.2個
C.3個
D.4個

【答案】B
【解析】解:∵拋物線y1= (x+1)2+1與y2=a(x﹣4)2﹣3交于點A(1,3), ∴3=a(1﹣4)2﹣3,
解得:a= ,故①正確;
∵E是拋物線的頂點,
∴AE=EC,
∴無法得出AC=AE,故②錯誤;
當(dāng)y=3時,3= (x+1)2+1,
解得:x1=1,x2=﹣3,
故B(﹣3,3),D(﹣1,1),
則AB=4,AD=BD=2
∴AD2+BD2=AB2 ,
∴③△ABD是等腰直角三角形,正確;
(x+1)2+1= (x﹣4)2﹣3時,
解得:x1=1,x2=37,
∴當(dāng)37>x>1時,y1>y2 , 故④錯誤.
故選:B.
【考點精析】關(guān)于本題考查的等腰直角三角形和二次函數(shù)的圖象,需要了解等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°;二次函數(shù)圖像關(guān)鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸交于A(x1 , 0)、B(x2 , 0)(x1<x2)兩點,與y軸交于點C,x1 , x2是方程x2+4x﹣5=0的兩根.

(1)若拋物線的頂點為D,求SABC:SACD的值;
(2)若∠ADC=90°,求二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ADABC的中線,BEABD的中線.

(1)若ABE=15°,BAD=40°,則BED=________°;

(2)請在圖中作出BEDBD邊上的高EF;

(3)若ABC的面積為40,BD=5,則點EBC邊的距離為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知拋物線y= x2+bx+c(b,c為常數(shù))的頂點為P,等腰直角三角形ABC的頂點A的坐標(biāo)為(0,﹣1),C的坐標(biāo)為(4,3),直角頂點B在第四象限.

(1)如圖,若該拋物線過A,B兩點,求該拋物線的函數(shù)表達(dá)式;
(2)平移(1)中的拋物線,使頂點P在直線AC上滑動,且與AC交于另一點Q.
(i)若點M在直線AC下方,且為平移前(1)中的拋物線上的點,當(dāng)以M、P、Q三點為頂點的三角形是等腰直角三角形時,求出所有符合條件的點M的坐標(biāo);
(ii)取BC的中點N,連接NP,BQ.試探究 是否存在最大值?若存在,求出該最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某單位組織職工開展植樹活動,植樹量與人數(shù)之間關(guān)系如圖,下列說法不正確的是( )

A.參加本次植樹活動共有30人
B.每人植樹量的眾數(shù)是4棵
C.每人植樹量的中位數(shù)是5棵
D.每人植樹量的平均數(shù)是5棵

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個正方體的展開圖,標(biāo)注了字母的面分別是正方體的正面和底面,其他面分別用字母,,表示.已知,,,

(1)如果正方體的左面與右面所標(biāo)注字母代表的代數(shù)式的值相等,求出的值;

(2)如果正面字母代表的代數(shù)式與對面字母代表的代數(shù)式的值相等,且為整數(shù),求整數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】商場正在銷售帳篷和棉被兩種防寒商品,已知購買1頂帳篷和2床棉被共需300元,購買2頂帳篷和3床棉被共需510元.

(1)求1頂帳篷和1床棉被的價格各是多少元?

(2)某學(xué)校準(zhǔn)備購買這兩種防寒商品共80件,送給青海玉樹災(zāi)區(qū),要求每種商品都要購買,且?guī)づ竦臄?shù)量多于棉被的數(shù)量,但因為學(xué)校資金不足,購買總金額不能超過8500元,請問學(xué)校共有幾種購買方案?(要求寫出具體的購買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為a的正方形中挖掉一個邊長為bba)的小正方形,把余下的部分剪拼成一個長方形.通過計算陰影部分的面積,驗證了一個等式,這個等式是( 。

A. a2b2=ab)(ab B. ab2=a22abb2

C. ab2=a22abb2 D. a2ab=aab

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,CA=CB,∠ACB=90°,AB=2,點D為AB的中點,以點D為圓心作圓心角為90°的扇形DEF,點C恰在弧EF上,則圖中陰影部分的面積為(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案